Lecture 1: Introduction Spatial statistics and image analysis

David Bolin University of Gothenburg

> Gothenburg March 25, 2019

UNIVERSITY OF GOTHENBURG

CHALMERS

Practical information

Teachers:

David Bolin: Lecturer and examiner

Room: H3028

E-mail: david.bolin@chalmers.se

Homepage:

www.math.chalmers.se/Stat/Grundutb/CTH/tms016/1819/

Schedule:

Lectures: Mondays and Wednesdays (10-12) Compute exercices: Mondays and Wednesdays (13-15)

The lectures will cover the theory, which you will use in practice in the computer exercise directly after each lecture. UNIVERSITY OF GOTHENBURG

CHALMERS

Course litterature

The course is mainly based on:

• Lecture notes by Mats Rudemo.

More details are found in:

- Handbook of Spatial Statistics by Gelfand et. al.
- Elements of statistical learning by Hastie et. al.
- Computer Age Statistical Inference by Efron and Hastie.

The books are available as eBooks, see homepage. In the schedule, the relevant chapters are indicated for each lecture.

Practical David Bolin

UNIVERSITY OF GOTHENBURG

CHALMERS

Examimation

There will be two components in the examination:

- Written exam at the end of the course
- Project assignment.

these are weighted equally for the final grade.

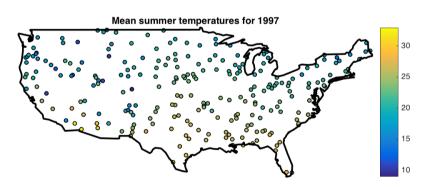
Successful completion of the course will be rewarded by 7.5 hp.

The project:

- can be in groups of 1-3 students.
- will consist of three parts: two problems introduced in the computer exercises and one problem you can choose on your own (with approval from me).
- Is presented at a seminar and as a written report at the end of the course.

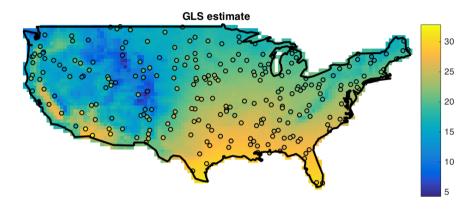
Practical David Bolin Practical David Bolin

Contents


- Traditional method from spatial statistics.
- Statistical and machine learning methods for image analysis.
- Application areas:
 - Image analysis
 - climate science
 - environmental statistics
 - remote sensing
 - microscopy
 - medical imaging and fMRI
 - Disease mapping
 - +++

David Bolin Course content

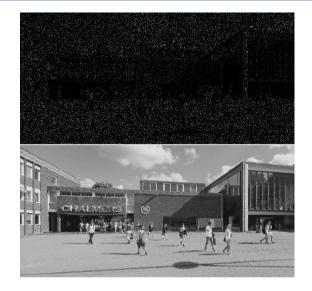
UNIVERSITY OF GOTHENBURG


CHALMERS

A common problem in geostatistics

- Mean summer temperatures (June-August) in the continental US 1997 recorded at 250 weather stations.
- We want to estimate all US temperatures based on the data.

Using a statistical model, where we assume that there observations are noisy observations of the true temperatures, we obtain


David Bolin Course content

UNIVERSITY OF GOTHENBURG

Kriging estimation

CHALMERS

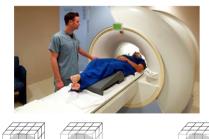
Image reconstruction

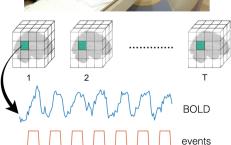
Course content David Bolin Course content

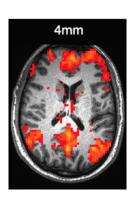
David Bolin

Segmentation

Noise reduction


Course content David Bolin


Course content David Bolin


UNIVERSITY OF GOTHENBURG

CHALMERS

Brain imaging

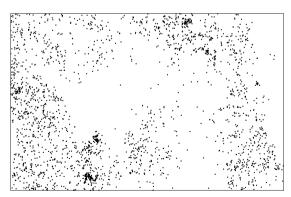
UNIVERSITY OF GOTHENBURG

CHALMERS

Classification

2	0	Ч	/	9	2	į	3		4
3	5	3	6	Ì	7	J	8	6	9
4	0	9	/	1	2	4	3	2	7
3	8	6	9	0	5	6	0	7	6
1	8	1	9	3	9	8	5	3	3
3	0	7	4	9	8	0	9	4	1
4	4	6	0		5	6	T	0	0
1	7	1	6	3	0	2	1	1	1
ප	0	2	6	7	8	Z	9	0	4
6	7	4	6	8	0	7	8	3	1

Puppy or bagel?


See twistedsifter.com/2016/03/puppy-or-bagel-meme-gallery/ for more important classification problems.

Course content David Bolin

UNIVERSITY OF GOTHENBURG

CHALMERS

Point processes

The locations of the tree species Beilschmiedia Pendula in the tropical rainforest plot on Barro Colorado Island.

Elevation Slope Al B

Ca Cu Fe K

Mg Mn N Nmin

P Zn pH

Possible covariates that can be used for drawing conclusions on the association of habitat preferences.

Course content David Bolin

UNIVERSITY OF GOTHENBURG

CHALMERS

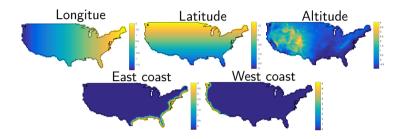
Outline of course

Current plan for lectures:

- 1 Introduction and background
- 2 Gaussian random fields
- 3-4 Kriging and parameter estimation
- 5 Gaussian Markov random fields
- 6-7 Image segmentation and mixture models
- 8-9 Discrete Markov random fields
- 10-11 Machine learning methods and neural nets
 - 12 Point processes
 - 13 Recap
- 14-15 Project seminars

Course content David Bolin

Course content


David Bolin

Example: Interpolation of the temperature data

• A first idea is to use linear regression to interpolate the data:

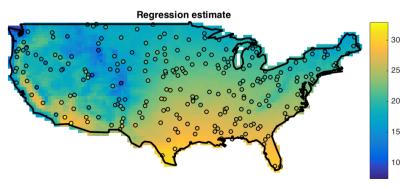
$$Y(\mathbf{s}) = \sum_{i=1}^k \beta_i B_i(\mathbf{s}) + \varepsilon_\mathbf{s}, \quad \text{where } \varepsilon_\mathbf{s} \text{ are iid } \mathsf{N}(0, \sigma^2)$$

Possible covariates

Example David Bolin

UNIVERSITY OF GOTHENBURG

CHALMERS

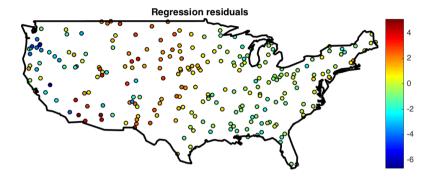

OLS estimate

• Estimate the parameters using ordinary least squares:

$$\hat{\boldsymbol{\beta}} = \operatorname*{arg\,min}_{\boldsymbol{\beta}} \|\mathbf{Y} - \mathbf{B}\boldsymbol{\beta}\| \quad \Rightarrow \quad \hat{\boldsymbol{\beta}} = (\mathbf{B}^{\top}\mathbf{B})^{-1}\mathbf{B}^{\top}\mathbf{Y},$$

where $\mathbf{B}_{ij} = B_i(\mathbf{s}_j)$ and $\mathbf{Y}_i = Y(\mathbf{s}_i)$.

• Calculate the prediction $\hat{X}(\mathbf{s}) = \sum_{i=1}^k \hat{\beta}_i B_i(\mathbf{s})$.


Example David Bolin

UNIVERSITY OF GOTHENBURG

CHALMERS

Residudals

- How do we test whether the prediction is reasonable?
- If the model assumptions hold, the residuals $Y(\mathbf{s}) \hat{X}(\mathbf{s})$ should be independent identically distributed.

Example David Bolin