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Gaussian random fields

• A random field X(s) is Gaussian if (X(s1), . . . , X(sn))T has a
multivariate Gaussian distribution for each choice of s1, . . . , sn.

• X(s) is uniquely specified by
1 The mean value function µ(s) = E(X(s)), and

2 The covariance function r(s1, s2) = C(X(s1), X(s2)).

• X(s) is
1 stationary if µ(s) ⌘ µ and if r(s1, s2) depends only on the

separation between the locations, h = s1 � s2.
2 isotropic if µ(s) ⌘ µ and if r(s1, s2) only depends on the

distance between the locations, h = ks1 � s2k.
• Examples of isotropic covariance functions:

1 Matérn: r(h) = �2

�(⌫)2⌫�1 (h)⌫K⌫(h)

2 Exponential: r(h) = �2 exp(�h)

3 Spherical: r(h) = �2(1� 3
2
h
✓ + 1

2
h3

✓3 ), if h  ✓ and r(h) = 0
otherwise.
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Semivariograms

• In geostatistics, it is common do describe random fields in
terms of semivariograms instead of covariance functions.

• For a random field X(s), the semivariogram is defined as

�(s, t) =
1

2
V(X(s)�X(t))

and the variogram is V(X(s)�X(t)).
• For an isotropic random field with covariance r(h), the

semivariogram is
�(h) = r(0)� r(h)

(exersice!)
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Matérn variograms
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Some terminology
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Statistical models including random fields

• We have measurements yi, . . . , yn taken at some spatial
locations s1, . . . , sn.

• Given that we also have some explanatory variables
B1, . . . , BK , we use a model

Yi =
KX

k=1

Bk(si)�k +X(si) + "i .

where X(s) is a mean-zero Gaussian random field.
• Questions:

1 How do we estimate the parameters of the model?

2 How can we perform prediction for an unobserved location s0?
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Image analysis applications

Image reconstruction Noise reduction
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Conditional distributions

For a multivariate Gaussian variable
✓
X1

X2

◆
⇠ N

✓✓
µ1

µ2

◆
,

✓
⌃11 ⌃12

⌃21 ⌃22

◆◆

we have that

X2|X1 ⇠ N(µ2 +⌃21⌃
�1
11 (X1 � µ1),⌃22 �⌃21⌃

�1
11 ⌃12)

If X2 represents a random field at some unobserved locations, and
X1 the observations, the conditional mean

E(X2|X1) = µ2 +⌃21⌃
�1
11 (X1 � µ1)

is often called the Kriging predictor.
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Kriging prediction

Traditionally, one has separated between three cases
• Simple kriging: µ(s) = B(s)� is known.
• Ordinary kriging: µ(s) = � is unknown but constant.
• Universal kriging: µ(s) = B(s)� is unknown.

For ordinary and universal kriging, we have to estimate the
mean-value together with the covariance parameters ✓ before
computing the prediction.

So we have to
• Estimate the model parameters {�,�2

e ,✓}.
• Given the parameters, compute the kriging prediction.
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Example: US temperatures

• Mean summer temperatures (June-August) in the continental
US 1997 recorded at 250 weather stations.

• We want to estimate all US temperatures based on the data.
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Covariates

• A first idea is to use linear regression to interpolate the data:

Y (s) =
kX

i=1

�iBi(s) + "s, where "s are iid N(0,�2)

• Possible covariates

Longitue Latitude Altitude

East coast West coast
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OLS estimate

• Estimate the parameters using ordinary least squares:

�̂ = (B>B)�1B>Y,

where Bij = Bi(sj) and Yi = Y (si).
• Calculate the prediction X̂(s) =

Pk
i=1 �̂iBi(s).
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Residudals

• How do we test whether the prediction is reasonable?
• If the model assumptions hold, the residuals Y (s)� X̂(s)

should be independent identically distributed.
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Variogram estimate
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Regression parameters

Update regression parameters using GLS:

�̂GLS = (B>⌃�1B)�1B>⌃�1Y,

Confidence interval for �i:

I�i = (�̂i ± 1.96
p

Vii)

where V = (B>⌃�1B)�1.

OLS GLS
Intercept 21.6317⇤ 20.4688⇤
Longitude �1.2897⇤ �1.0022
Latitude �2.6959⇤ �2.6845⇤
Altitude �2.6693⇤ �4.2177⇤
East coast �0.0952 �0.0096
West coast �1.3064⇤ �1.0139⇤
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Kriging estimation

The kriging estimator is

E(X(s)|Y, ✓̂) = µ̂(s) + r(⌃+ �2
eI)

�1(Y �B�̂)

where ⌃ij = r(si, sj), ri = r(s, si), and µ̂ =
PK

k=1Bk(s)�̂k.
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Kriging residuals

There is now less spatial structure in the residuals.
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Empirical covariances of residuals
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