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Example project 1

Data from the Spatial Morphology Group at Chalmers

• For city planning it is important to know how the structure of

the city affects things such as population density, and housing

prices.

• The aim is to derive a spatial model for predicting population

density or housing prices using various explanatory variables.
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Example project 2

Data from AstraZeneca

• For the production of medical tablets, it is important to know

how the manufacturing process affects the composition.

• To do this, one first needs to be able to identify the different

components in the tablet based on micro-CT images.

• The goal of this project is to design a method for image

segmentation of such images.
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Example project 3

• Download a dataset of temperature or precipitation

measurements.

• Develop geostatistical and machine learning methods for

predicting temperature or precipitation.

• Compare the models using cross-validation.
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Gaussian random fields

So far, we have looked at models

Yi = B(si)� +X(si) + "i, i = 1, . . . , N

where "i ⇠ N(0,�2
e) and X(s) is a Gaussian random field.

• The data vector Y = (Y1, . . . , YN )T has distribution

N(B�,⌃), where ⌃ = ⌃X + �2
eI.

• log-likelihood:

`(Y;�,✓) = 1
2 log |⌃|�

1
2(Y �B�)T⌃�1(Y �B�).

• Kriging: E(Y0|Y,�,✓) = B(s0)� + r⌃�1(Y �B�),
where ri = C(Y0, Yi).

• Sampling: Ys = B� +RTe, where e ⇠ N(0, I) and

RTR = ⌃ is the Cholesky factorization.
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Implementation aspects

Consider the problem of sampling. Two important aspects are

1 The RAM memory required: This is dominated by the memory

required to store ⌃, which has O(N2) unique elements.

2 The computation time for performing the necessary steps:

Compute ⌃, compute the Cholesky factorization ⌃ = RTR,

solve x = RTe with e ⇠ N(0, I). This requires O(N3) flops.

Assume that x is an image of size N = n⇥ n. The following table

gives some results for the sampling on a standard laptop.

time (s) Memory (MB)

n = 50 1.1 47.7

n = 100 23.4 762.9

n = 150 272.5 3862.4

An image of size 150⇥ 150 is not a very large image!
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Computation times for a GMRF
Assume that x is an image of size N = n⇥ n, chosen as a GMRF

specified using the stencil
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Let us now sample x and measure

1 The RAM memory required.

2 The computation time for performing the necessary steps.

The following table gives some results for the sampling on a

standard laptop.

time (s) Memory (MB)

n = 50 0.012 0.21

n = 100 0.054 0.83

n = 150 0.177 1.88
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Sparsity of Q and R

• The crucial aspect of computations with GMRFs is that the

Cholesky factor R is sparse.

• However, it is often less sparse than the precision matrix Q.

The additional non-zero nodes is usually called fill-in.

• We can reduce the fill-in by reordering the nodes.
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Sparsity using reorderings

• Finding the optimal reordering is an NP-hard problem, but

there are many fast methods for finding good reorderings.

• The approximate minimum degree (AMD) reordering is

generally a good option.

• The images above are obtained with reo = amd(Q) in Matlab.

• If you use reorderings, remember to also reorder the

observations, covariates, etc. using the same reordering.
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