Lecture 7: Image features
Spatial Statistics and Image Analysis

David Bolin University of Gothenburg

> Gothenburg April 15, 2019

UNIVERSITY OF GOTHENBURG

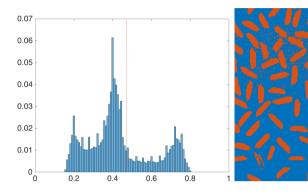
CHALMERS

Image classification

UNIVERSITY OF GOTHENBURG

CHALMERS

Intensity-based thresholding



Classification and mixture models

David Bolin

UNIVERSITY OF GOTHENBURG

CHALMERS

Gaussian mixture models

• Hierarchical model for pixel values given classes:

$$\pi(\mathbf{Y}_i|z_i=k) \sim \mathsf{N}(\pmb{\mu}_k, \pmb{\Sigma}_k)$$

$$\pi(z_i) = \begin{cases} \pi_1 & \text{if } z_i=1\\ \pi_2 & \text{if } z_i=2\\ \vdots\\ \pi_K & \text{if } z_i=K\\ 0 & \text{otherwise} \end{cases}$$

• Unconditional density:

$$\pi(\mathbf{Y}_i) = \sum_{k=1}^K \pi_k \pi_G(\mathbf{Y}_i; \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$

UNIVERSITY OF GOTHENBURG

Classification using GMMs

Posterior class probabilities

$$P(z_i = k | \mathbf{Y}_i) = \frac{\pi_k \pi_G(\mathbf{Y}_i; \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}{\sum_{l=1}^K \pi_l \pi_G(\mathbf{Y}_i; \boldsymbol{\mu}_l, \boldsymbol{\Sigma}_l)}$$

• Maximum aposteriori-classification:

$$class_i = \arg\max_k \mathsf{P}(z_i = k|\mathbf{Y}_i)$$

• This is also known as quadratic discriminant analysis. If all Σ_k are equal, we get linear discriminant analysis.

Classification and mixture models

David Bolin

UNIVERSITY OF GOTHENBURG

David Bolin

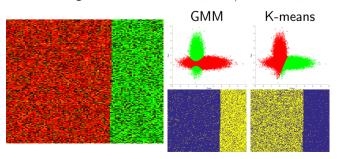
UNIVERSITY OF GOTHENBURG

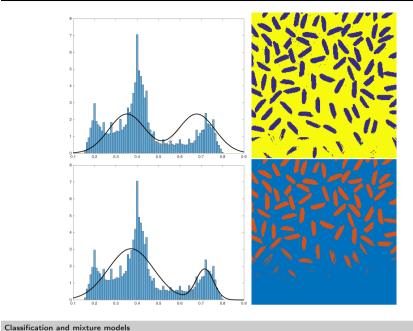
CHALMERS

The K-means algorithm

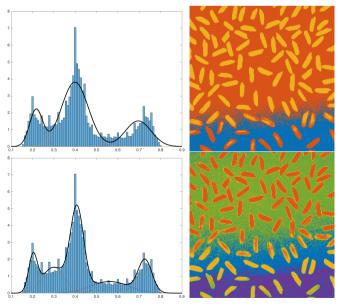
- lacktriangle Randomly select K observations as cluster centers.
- Assign each observation to the nearest cluster center.
- 3 Compute the mean for each cluster and assign these as new cluster centers.
- 4 Repeat from Step 2.

In the K-means algorithm, we assume $\pi_k = 1/K$ and $\Sigma_k = \sigma^2 \mathbf{I}$.





CHALMERS



K = 3

RGB classification

K = 4

Supervised learning

- We have a set of pixels values $\{\mathbf Y_1,\ldots,\mathbf Y_n\}\in\mathbb R^d$ with known classes $\{z_1,\ldots,z_n\}$.
- Base parameter estimates on these:

$$\hat{\pi}_k = \frac{n_k}{n} \quad \text{where } n_k = \sum_{i=1}^n 1(z_i = k)$$

$$\hat{\mu}_k = \frac{1}{n_k} \sum_{i=1}^n 1(z_i = k) \mathbf{Y}_i$$

$$\hat{\Sigma}_k = \frac{1}{n_k - d} \sum_{i=1}^n 1(z_i = k) (\mathbf{Y}_i - \boldsymbol{\mu}_k) (\mathbf{Y}_i - \boldsymbol{\mu}_k)^T$$

Classification and mixture models

David Bolin

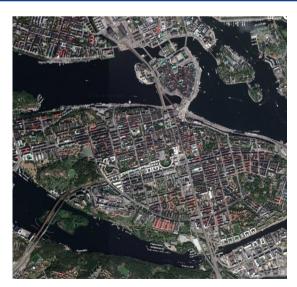
Classification and mixture models

David Bolin

UNIVERSITY OF GOTHENBURG

CHALMERS

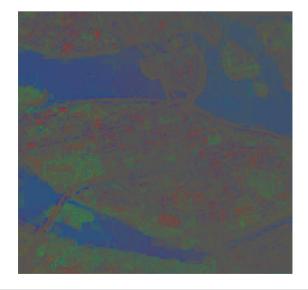
Classification using colors



UNIVERSITY OF GOTHENBURG

CHALMERS

Relative colors



Classification and mixture models David Bolin

Classification and mixture models

David Bolin

CHALMERS

UNIVERSITY OF GOTHENBURG

CHALMERS

Classification using relative amount of green and blue

Including additional features

K=3 K=4

- The GMM is does not take spatial dependencies into account.
- The classes may have additional features except for raw pixel values which we may want to use.
- Today we will introduce some common image features that are useful both for segmentation and classification.
- On Wednesday, we will extend the mixture model so that the dependencies are modeled directly.

Classification and mixture models

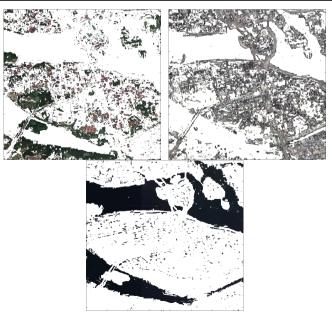
David Bolin

Classification and mixture models

David Bolin

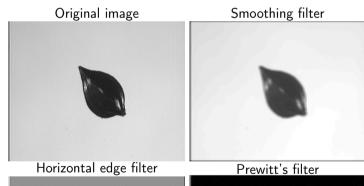
UNIVERSITY OF GOTHENBURG

CHALMERS



UNIVERSITY OF GOTHENBURG

CHALMERS



Classification and mixture models

UNIVERSITY OF GOTHENBURG

Classification and mixture models

CHALMERS

David Bolin

