Lecture 1: Introduction

Felix Held, Mathematical Sciences

MSA220/MVE440 Statistical Learning for Big Data

23rd March 2020

What is Big Data?

Just a buzz word?

The cure for everything?

Cancer treatment is on the brink of a data revolution

How big data is changing cancer research

Business Insider¹

https://www.businessinsider.com/big-data-and-cancer-2015-9?r=US&IR=T&IR=T

BIG DATA

The Parable of Google Flu: Traps in Big Data Analysis

David Lazer, 1,2* Ryan Kennedy, 1,3,4 Gary King, 3 Alessandro Vespignani 5,6,3

Scientific discussion article1

¹ Lazer2014

Big Data - Big Problems?

Financial Times¹

The New York Times

Opinion

THE STONE

How Democracy Can Survive Big Data

By Colin Koopman

March 22, 2018

New York Times²

¹ https://www.ft.com/content/21a6e7d8-b479-11e3-a09a-00144feabdc0#axzz2yQ2QQfQX

² https://www.nytimes.com/2018/03/22/opinion/democracy-survive-data.html

It's a huge topic in science!

Over 5 million hits on Google Scholar

So Big Data is about size?

Yes and no.

Note that *size* is a flexible term. Here mostly:

▶ Size as in: Number of observations

Big-*n* setting

▶ Size as in: Number of variables

Big-p setting

▶ Size as in: Number of observations **and** variables

Big-n / Big-p setting

Is this all?

The Four Vs of Big Data

https://www.ibmbigdatahub.com/infographic/four-vs-big-data

How does statistics come into play?

Statistics as a science has always been concerned with...

- experimental design or 'how to collect the data'
- modelling of data and underlying assumptions
- ▶ inference of parameters
- uncertainty quantification in estimated parameters/predictions

Focus is on the last three in this course.

Statistical challenges in Big Data

- ► Increase in sample size often leads to increase in complexity and variety of data (*p* grows with *n*)
- ▶ More data \neq less uncertainty
- ▶ A lot of classical theory is for fixed *p* and growing *n*
- Exploration and visualisation of Big Data can already require statistics
- Probability of extreme values: Unlikely results become much more likely with an increase in n
- Curse of dimensionality: Lot's of space between data points in high-dimensional space

Statistical Learning

Basics about random variables

- We will consider discrete and continuous random quantities
- ▶ Probability mass function (pmf) p(k) for a discrete variable

Example: Bernoulli distribution with parameter $\theta \in (0,1)$

$$p(0) = \theta, \quad p(1) = 1 - \theta$$

▶ Probability density function (pdf) p(x) for a continuous variables

Example: Multivariate normal distribution with mean vector $\boldsymbol{\mu} \in \mathbb{R}^p$ and covariance matrix $\boldsymbol{\Sigma} \in \mathbb{R}^{p \times p}$

$$p(\mathbf{x}) = |2\pi\mathbf{\Sigma}|^{-1/2} \exp\left(-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^{\mathsf{T}}\mathbf{\Sigma}^{-1}(\mathbf{x} - \boldsymbol{\mu})\right)$$

Two important rules (and a consequence)

Marginalisation

For a joint density p(x, y) it holds that

$$p(x) = \sum_{y} p(x, y)$$
 or $p(x) = \int p(x, y) dy$

Conditioning

For a joint density p(x, y) it holds that

$$p(x,y) = p(x|y)p(y) = p(y|x)p(x)$$

Both rules together imply Bayes' law

$$p(x|y) = \frac{p(y|x)p(x)}{p(y)}$$

Expectation and variance

Expectations and variance depend on an underlying pdf/pmf.

Notation:

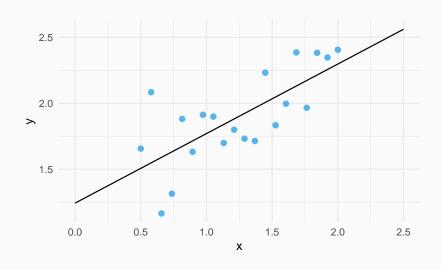
- $\blacktriangleright \mathbb{E}_{p(x)}[f(x)] = \int f(x)p(x) \, \mathrm{d}x$
- $\blacktriangleright \ \mathrm{Var}_{p(x)}[f(x)] = \mathbb{E}_{p(x)}\left[\left(f(x) \mathbb{E}_{p(x)}[f(x)]\right)^2\right]$

What is Statistical Learning?

Learn a model from data by minimizing expected prediction error determined by a loss function.

- ▶ Model: Find a model that is suitable for the data
- ▶ Data: Data with known outcomes is needed
- Expected prediction error: Focus on quality of prediction (predictive modelling)
- ► Loss function: Quantifies the discrepancy between observed data and predictions

Linear regression - An old friend



Statistical Learning and Linear Regression

▶ Data: Training data consists of independent pairs

$$(y_i, \mathbf{x}_i), \quad i = 1, \dots, n$$

Observed response $y_i \in \mathbb{R}$ for predictors $\mathbf{x}_i \in \mathbb{R}^p$

► Model:

$$y_i = \mathbf{x}_i^{\mathsf{T}} \boldsymbol{\beta} + \varepsilon_i$$

where $\varepsilon_i \sim N(0, \sigma^2)$ independent

▶ Loss function: Squared error loss

$$L(y, \hat{y}) = (y - \hat{y})^2$$

Statistical decision theory for regression (I)

▶ Squared error loss between outcome y and a prediction $f(\mathbf{x})$ dependent on the variable(s) x

$$L(y, f(\mathbf{x})) = (y - f(\mathbf{x}))^2$$

- ► Assume we want to find the 'best' *f* that can be learned from training data
- When a new pair of data (y, x) from the same distribution (population) as the training data arrives, expected prediction loss for a given f is

$$J(f) = \mathbb{E}_{p(\mathbf{x}, y)} \left[L(y, f(\mathbf{x})) \right] = \mathbb{E}_{p(\mathbf{x})} \left[\mathbb{E}_{p(y|\mathbf{x})} \left[L(y, f(\mathbf{x})) \right] \right]$$

Define 'best' by:

$$\widehat{f} = \operatorname*{arg\,min}_{f} J(f)$$

Statistical decision theory for regression (II)

Can we determine \hat{f} ? Focus on inner expectation

$$\begin{split} \mathbb{E}_{p(y|\mathbf{x})}\left[(y-f(\mathbf{x}))^2\right] &= \int (y-\mathbb{E}_{p(y|\mathbf{x})}[y] + \mathbb{E}_{p(y|\mathbf{x})}[y] - f(\mathbf{x}))^2 p(y|\mathbf{x}) \, \mathrm{d}y \\ &= \int (y-\mathbb{E}_{p(y|\mathbf{x})}[y])^2 p(y|\mathbf{x}) \, \mathrm{d}y \\ &+ 2 \int (y-\mathbb{E}_{p(y|\mathbf{x})}[y]) (\mathbb{E}_{p(y|\mathbf{x})}[y] - f(\mathbf{x})) p(y|\mathbf{x}) \, \mathrm{d}y \\ &+ \int (\mathbb{E}_{p(y|\mathbf{x})}[y] - f(\mathbf{x}))^2 p(y|\mathbf{x}) \, \mathrm{d}y \\ &= \mathrm{Var}_{p(y|\mathbf{x})}[y] + (\mathbb{E}_{p(y|\mathbf{x})}[y] - f(\mathbf{x}))^2 \end{split}$$

Minimal for $f(\mathbf{x}) = \mathbb{E}_{p(y|\mathbf{x})}[y]$

Statistical decision theory for regression (III)

► We just derived that

$$\widehat{f}(\mathbf{x}) = \mathbb{E}_{p(y|\mathbf{x})}[y]$$

the expectation of y given that \mathbf{x} is fixed (conditional mean)

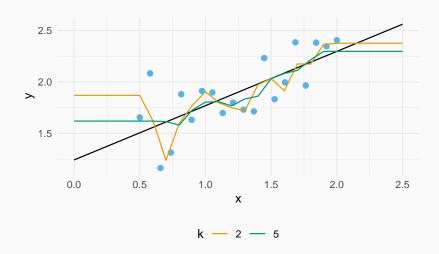
- Regression methods approximate the conditional mean
- ightharpoonup For many observations y with identical x we could use

$$\mathbb{E}_{p(y|\mathbf{x})}[y] \approx \frac{1}{|\{y_i : \mathbf{x}_i = \mathbf{x}\}|} \sum_{\mathbf{x}_i = \mathbf{x}} y_i$$

▶ Probably more realistic to look for the k closest neighbours of \mathbf{x} in the training data $N_k(\mathbf{x}) = \{\mathbf{x}_{i_1}, \dots, \mathbf{x}_{i_k}\}$. Then

$$\mathbb{E}_{p(y|\mathbf{x})}[y] \approx \frac{1}{k} \sum_{\mathbf{x}_{i_l} \in N_k(\mathbf{x})} y_{i_l}$$

Average of k neighbours



Back to linear regression

Linear regression is a **model-based approach** and assumes that the dependence of y on x can be written as a weighted sum, i.e.

$$y = \mathbf{x}^{\mathsf{T}} \boldsymbol{\beta} + \boldsymbol{\varepsilon}$$

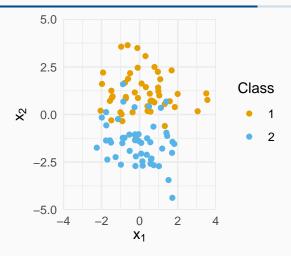
where $\varepsilon \sim N(0,1)$. This implies to the mean of y given \mathbf{x}

$$\mathbb{E}_{p(y|x)}[y] = \mathbf{x}^{\mathsf{T}} \boldsymbol{\beta}.$$

Note that in practice this equality will only hold approximately.

Classification

A simple example of classification



How do we classify a pair of new coordinates $\mathbf{x} = (x_1, x_2)$?

k-nearest neighbour classifier (kNN)

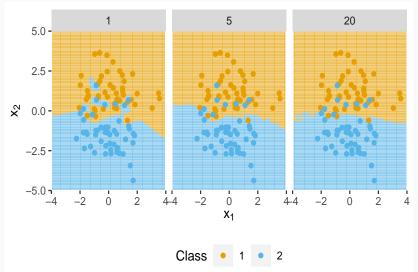
► Find the *k* predictors

$$N_k(\mathbf{x}) = \{\mathbf{x}_{i_1}, \dots, \mathbf{x}_{i_k}\}$$

in the training sample, that are closest to ${\bf x}$ in the Euclidean norm.

▶ Majority vote: Assign x to the class that most predictors in $N_k(\mathbf{x})$ belong to (highest frequency)

kNN and its decision boundaries



Classification and Statistical Learning

Classification

Learn a rule $c(\mathbf{x})$ from data which maps observed features \mathbf{x} to classes $\{1, ..., K\}$.

Remember:

Statistical Learning

Learn a model from data by minimizing expected prediction error determined by a loss function.

Here: rule \simeq model, and observed classes give us the required outcomes for learning.

What is a suitable loss?

Statistical decision theory for classification

▶ **0-1 misclassification loss:** Let i be the actual class of an object and $c(\mathbf{x})$ is a rule that returns the class for the variable(s) \mathbf{x} , then

$$L(i, c(\mathbf{x})) = \begin{cases} 0 & i = c(\mathbf{x}), \\ 1 & i \neq c(\mathbf{x}) \end{cases} = \mathbb{1}(i \neq c(\mathbf{x}))$$

Expected prediction error

$$J(c) = \mathbb{E}_{p(\mathbf{x})} \left[\mathbb{E}_{p(i|\mathbf{x})} [\mathbb{1}(i \neq c(\mathbf{x}))] \right]$$

Minimizing expected prediction error leads to the rule

$$\hat{c}(\mathbf{x}) = \underset{1 \le i \le K}{\arg\max} \ p(i|\mathbf{x})$$

This is called **Bayes' rule**.

Deriving Bayes' rule

Again, focus on inner expectation

$$\mathbb{E}_{p(i|\mathbf{x})}[\mathbb{1}(i \neq c(\mathbf{x}))] = \sum_{i=1}^{K} \mathbb{1}(i \neq c(\mathbf{x}))p(i|\mathbf{x})$$
$$= \sum_{i \neq c(\mathbf{x})} p(i|\mathbf{x})$$
$$= 1 - p(c(\mathbf{x})|\mathbf{x})$$

Minimal for $\hat{c}(\mathbf{x}) = \arg \max_{1 \le i \le K} p(i|\mathbf{x})$

Back to kNN

- NNN solves the classification problem by approximating $p(i|\mathbf{x})$ with the frequency of class i among the k closest neighbours of \mathbf{x} .
- ▶ Given data (i_l, \mathbf{x}_l) for l = 1, ..., n it holds that

$$\hat{c}(\mathbf{x}) = \operatorname*{arg\,max}_{1 \leq i \leq K} \frac{1}{k} \sum_{\mathbf{x}_l \in N_k(\mathbf{x})} \mathbb{1}(i_l = i)$$

A note on kNN

There are two choices to make when implementing a kNN method

- 1. The metric to determine a neighbourhood
 - e.g. Euclidean/ ℓ_2 norm, Manhattan/ ℓ_1 norm, max norm, ...
- 2. The number of neighbours, i.e. k

The choice of metric changes the underlying local model of the method while k determines the size of this local model.

Take-home message

- ▶ Big Data is complex and is multi-faceted
- Regression and classification can be formulated in the framework of Statistical Learning
- ► In both cases, focus is on prediction