
Lecture 1: Introduction

Felix Held, Mathematical Sciences

MSA220/MVE440 Statistical Learning for Big Data

23rd March 2020



What is Big Data?



Just a buzz word?
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The cure for everything?

Business Insider1

1 https://www.businessinsider.com/big-data-and-cancer-2015-9?r=US&IR=T&IR=T
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Big Data - Big Problems?

Scientific discussion article1

1 Lazer2014
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Big Data - Big Problems?

Financial Times1 New York Times2

1 https://www.ft.com/content/21a6e7d8-b479-11e3-a09a-00144feabdc0#axzz2yQ2QQfQX
2 https://www.nytimes.com/2018/03/22/opinion/democracy-survive-data.html
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It’s a huge topic in science!

Over 5 million hits on Google Scholar
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So Big Data is about size?

Yes and no.

Note that size is a flexible term. Here mostly:

▶ Size as in: Number of observations
Big-𝑛 setting

▶ Size as in: Number of variables
Big-𝑝 setting

▶ Size as in: Number of observations and variables
Big-𝑛 / Big-𝑝 setting

Is this all?
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The Four Vs of Big Data

https://www.ibmbigdatahub.com/infographic/four-vs-big-data
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How does statistics come into play?

Statistics as a science has always been concerned with. . .

▶ experimental design or ‘how to collect the data’
▶ modelling of data and underlying assumptions
▶ inference of parameters
▶ uncertainty quantification in estimated
parameters/predictions

Focus is on the last three in this course.
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Statistical challenges in Big Data

▶ Increase in sample size often leads to increase in
complexity and variety of data (𝑝 grows with 𝑛)

▶ More data ≠ less uncertainty
▶ A lot of classical theory is for fixed 𝑝 and growing 𝑛
▶ Exploration and visualisation of Big Data can already
require statistics

▶ Probability of extreme values: Unlikely results become
much more likely with an increase in 𝑛

▶ Curse of dimensionality: Lot’s of space between data
points in high-dimensional space
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Statistical Learning



Basics about random variables

▶ We will consider discrete and continuous random
quantities

▶ Probability mass function (pmf) 𝑝(𝑘) for a discrete
variable
Example: Bernoulli distribution with parameter 𝜃 ∈ (0, 1)

𝑝(0) = 𝜃, 𝑝(1) = 1 − 𝜃
▶ Probability density function (pdf) 𝑝(𝐱) for a continuous
variables
Example: Multivariate normal distribution with mean
vector 𝝁 ∈ ℝ𝑝 and covariance matrix 𝚺 ∈ ℝ𝑝×𝑝

𝑝(𝐱) = |2𝜋𝚺|−1/2 exp (−12(𝐱 − 𝝁)⊤𝚺−1(𝐱 − 𝝁))
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Two important rules (and a consequence)

Marginalisation
For a joint density 𝑝(𝑥, 𝑦) it holds that

𝑝(𝑥) = ∑
𝑦
𝑝(𝑥, 𝑦) or 𝑝(𝑥) = ∫𝑝(𝑥, 𝑦) d𝑦

Conditioning
For a joint density 𝑝(𝑥, 𝑦) it holds that

𝑝(𝑥, 𝑦) = 𝑝(𝑥|𝑦)𝑝(𝑦) = 𝑝(𝑦|𝑥)𝑝(𝑥)

Both rules together imply Bayes’ law

𝑝(𝑥|𝑦) = 𝑝(𝑦|𝑥)𝑝(𝑥)
𝑝(𝑦)
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Expectation and variance

Expectations and variance depend on an underlying
pdf/pmf.

Notation:

▶ 𝔼𝑝(𝑥)[𝑓(𝑥)] = ∫𝑓(𝑥)𝑝(𝑥)d𝑥

▶ Var𝑝(𝑥)[𝑓(𝑥)] = 𝔼𝑝(𝑥) [(𝑓(𝑥) − 𝔼𝑝(𝑥)[𝑓(𝑥)])
2]
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What is Statistical Learning?

Learn a model from data by minimizing expected prediction
error determined by a loss function.

▶ Model: Find a model that is suitable for the data
▶ Data: Data with known outcomes is needed
▶ Expected prediction error: Focus on quality of prediction
(predictive modelling)

▶ Loss function: Quantifies the discrepancy between
observed data and predictions
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Linear regression - An old friend
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Statistical Learning and Linear Regression

▶ Data: Training data consists of independent pairs

(𝑦𝑖, 𝐱𝑖), 𝑖 = 1, … , 𝑛

Observed response 𝑦𝑖 ∈ ℝ for predictors 𝐱𝑖 ∈ ℝ𝑝

▶ Model:
𝑦𝑖 = 𝐱⊤𝑖 𝜷 + 𝜀𝑖

where 𝜀𝑖 ∼ 𝑁(0, 𝜎2) independent
▶ Loss function: Squared error loss

𝐿(𝑦, ̂𝑦) = (𝑦 − ̂𝑦)2
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Statistical decision theory for regression (I)

▶ Squared error loss between outcome 𝑦 and a prediction
𝑓(𝐱) dependent on the variable(s) 𝑥

𝐿(𝑦, 𝑓(𝐱)) = (𝑦 − 𝑓(𝐱))2

▶ Assume we want to find the ‘best’ 𝑓 that can be learned
from training data

▶ When a new pair of data (𝑦, 𝐱) from the same distribution
(population) as the training data arrives, expected
prediction loss for a given 𝑓 is

𝐽(𝑓) = 𝔼𝑝(𝐱,𝑦) [𝐿(𝑦, 𝑓(𝐱))] = 𝔼𝑝(𝐱) [𝔼𝑝(𝑦|𝐱) [𝐿(𝑦, 𝑓(𝐱))]]
▶ Define ‘best’ by:

𝑓 = arg min
𝑓

𝐽(𝑓)
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Statistical decision theory for regression (II)

Can we determine 𝑓? Focus on inner expectation

𝔼𝑝(𝑦|𝐱) [(𝑦 − 𝑓(𝐱))2] = ∫(𝑦 −𝔼𝑝(𝑦|𝐱)[𝑦] + 𝔼𝑝(𝑦|𝐱)[𝑦] − 𝑓(𝐱))2𝑝(𝑦|𝐱) d𝑦

= ∫(𝑦 − 𝔼𝑝(𝑦|𝐱)[𝑦])2𝑝(𝑦|𝐱) d𝑦

+ 2∫(𝑦 − 𝔼𝑝(𝑦|𝐱)[𝑦])(𝔼𝑝(𝑦|𝐱)[𝑦] − 𝑓(𝐱))𝑝(𝑦|𝐱) d𝑦

+∫(𝔼𝑝(𝑦|𝐱)[𝑦] − 𝑓(𝐱))2𝑝(𝑦|𝐱)d𝑦

= Var𝑝(𝑦|𝐱)[𝑦] + (𝔼𝑝(𝑦|𝐱)[𝑦] − 𝑓(𝐱))2

Minimal for 𝑓(𝐱) = 𝔼𝑝(𝑦|𝐱)[𝑦]
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Statistical decision theory for regression (III)

▶ We just derived that

𝑓(𝐱) = 𝔼𝑝(𝑦|𝐱)[𝑦]
the expectation of 𝑦 given that 𝐱 is fixed (conditional
mean)

▶ Regression methods approximate the conditional mean
▶ For many observations 𝑦 with identical 𝐱 we could use

𝔼𝑝(𝑦|𝐱)[𝑦] ≈
1

|{𝑦𝑖 ∶ 𝐱𝑖 = 𝐱}| ∑𝐱𝑖=𝐱
𝑦𝑖

▶ Probably more realistic to look for the 𝑘 closest
neighbours of 𝐱 in the training data 𝑁𝑘(𝐱) = {𝐱𝑖1 , … , 𝐱𝑖𝑘}.
Then

𝔼𝑝(𝑦|𝐱)[𝑦] ≈
1
𝑘 ∑
𝐱𝑖𝑙∈𝑁𝑘(𝐱)

𝑦𝑖𝑙
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Average of 𝑘 neighbours
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Back to linear regression

Linear regression is a model-based approach and assumes
that the dependence of 𝑦 on 𝐱 can be written as a weighted
sum, i.e.

𝑦 = 𝐱⊤𝜷 + 𝜺

where 𝜀 ∼ 𝑁(0, 1). This implies to the mean of 𝑦 given 𝐱

𝔼𝑝(𝑦|𝑥)[𝑦] = 𝐱⊤𝜷.

Note that in practice this equality will only hold
approximately.
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Classification



A simple example of classification
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How do we classify a pair of new coordinates 𝐱 = (𝑥1, 𝑥2)?
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𝑘-nearest neighbour classifier (kNN)

▶ Find the 𝑘 predictors

𝑁𝑘(𝐱) = {𝐱𝑖1 , … , 𝐱𝑖𝑘}

in the training sample, that are closest to 𝐱 in the
Euclidean norm.

▶ Majority vote: Assign 𝐱 to the class that most predictors
in 𝑁𝑘(𝐱) belong to (highest frequency)
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kNN and its decision boundaries
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Classification and Statistical Learning

Classification
Learn a rule 𝑐(𝐱) from data which maps observed features 𝐱
to classes {1, … , 𝐾}.

Remember:
Statistical Learning
Learn a model from data by minimizing expected prediction
error determined by a loss function.

Here: rule ≃ model, and observed classes give us the required
outcomes for learning.
What is a suitable loss?
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Statistical decision theory for classification

▶ 0-1 misclassification loss: Let 𝑖 be the actual class of an
object and 𝑐(𝐱) is a rule that returns the class for the
variable(s) 𝐱, then

𝐿(𝑖, 𝑐(𝐱)) = {
0 𝑖 = 𝑐(𝐱),
1 𝑖 ≠ 𝑐(𝐱)

= 1(𝑖 ≠ 𝑐(𝐱))

▶ Expected prediction error

𝐽(𝑐) = 𝔼𝑝(𝐱) [𝔼𝑝(𝑖|𝐱)[1(𝑖 ≠ 𝑐(𝐱))]]
▶ Minimizing expected prediction error leads to the rule

̂𝑐(𝐱) = arg max
1≤𝑖≤𝐾

𝑝(𝑖|𝐱)

This is called Bayes’ rule.
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Deriving Bayes’ rule

Again, focus on inner expectation

𝔼𝑝(𝑖|𝐱)[1(𝑖 ≠ 𝑐(𝐱))] =
𝐾
∑
𝑖=1

1(𝑖 ≠ 𝑐(𝐱))𝑝(𝑖|𝐱)

= ∑
𝑖≠𝑐(𝐱)

𝑝(𝑖|𝐱)

= 1 − 𝑝(𝑐(𝐱)|𝐱)

Minimal for ̂𝑐(𝐱) = arg max1≤𝑖≤𝐾 𝑝(𝑖|𝐱)
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Back to kNN

▶ kNN solves the classification problem by approximating
𝑝(𝑖|𝐱) with the frequency of class 𝑖 among the 𝑘 closest
neighbours of 𝐱.

▶ Given data (𝑖𝑙, 𝐱𝑙) for 𝑙 = 1, … , 𝑛 it holds that

̂𝑐(𝐱) = arg max
1≤𝑖≤𝐾

1
𝑘 ∑
𝐱𝑙∈𝑁𝑘(𝐱)

1(𝑖𝑙 = 𝑖)
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A note on kNN

There are two choices to make when implementing a kNN
method

1. The metric to determine a neighbourhood
▶ e.g. Euclidean/ℓ2 norm, Manhattan/ℓ1 norm, max norm, . . .

2. The number of neighbours, i.e. 𝑘

The choice of metric changes the underlying local model of
the method while 𝑘 determines the size of this local model.
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Take-home message

▶ Big Data is complex and is multi-faceted
▶ Regression and classification can be formulated in the
framework of Statistical Learning

▶ In both cases, focus is on prediction

29/29


	What is Big Data?
	Statistical Learning
	Classification

