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Principal Component Analysis



Projection onto a subspace

Assume x € RP. Given orthonormal vectors by, ..., b,,, i.e.
bjll=1 and blb, =0forj#k

where m < p, the projection of x onto the m-dimensional linear subspace
V,, = span(by, ..., b,,) is

m m
%= (x"bb; = (Z bb/ ) X
= N
The projection is orthogonal, i.e. A \/\

x- fc)Tbj =0 . /<
Ve
for all b;. \/}4/
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Rayleigh Quotient

Let A € R**k be a symmetric matrix. For 0 # x € R¥ define
xT Ax
xT'x

J(x) =
J(x) is called the Rayleigh Quotient for A.

Maximizing the Rayleigh Quotient
The maximization problem

max J(x) subjectto xTx=1
X

is solved by a unit eigenvector x of A corresponding to the largest eigenvalue
A of A.

Note: —x is also a solution.
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Principal Component Analysis (PCA) (1)

Goal: Given continuous data, find an orthogonal coordinate system such that

the variance of the data is maximal along each direction.

Given data points xy, ..., X, and a unit vector r, the N
. . Y e
variance of the data along r is wpi¥
e o0 3.::::.0:3
n o o . :0'
_ 7P _ =\\2 _ _ T/\ o.o:-,. .
S(r) = IZ(r (x,— X)) =(m—DrlSr o
=1 e e o

where £ is the empirical covariance matrix.

Axes

=» Cartesian =» Principal Component
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Principal Component Analysis (PCA) (1)

Direction with maximal variance: Find r such that

max S(r) subjectto [r|?=rTr=1
r

» This is the same problem as maximizing the Rayleigh Quotient for the
matrix £.

» The solution is the eigenvector r, of £ corresponding to the largest
eigenvalue 4,.

How do we find the other directions?
Project data on orthogonal complement of ry, i.e.

%= (I, —nr{)x

and repeat the procedure above.
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Intermezzo: Pre-processing

Data is often pre-processed before it is used in computational methods.

Given a data matrix X € R™P, let

» m, € R" be the vector of row-means,
» m, € RP be the vector of column-means, and
» s € RP be the vector of per-column standard deviations.

Then (with1,, = (1,...,1)T € R")

» the matrix X —m,1; has row means zero (row-centred),
» the matrix X —1,m; has column means zero (column-centred), and

» the matrix X diag(1/s) has column standard deviations one (standardised
columns)
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Principal Component Analysis (PCA) (111)

Computational Procedure:

1. Centre (and possibly standardise) the columns of the data matrix X € R"*P
1
2. Calculate the empirical covariance matrix £ = —XTX

3. Determine the eigenvalues 4; and correspondmg orthonormal eigenvectors
T ofzforJ =1,..,pand order them such that

M2l 224,20

4. The vectors r; give the direction of the principal components (PC) rf rj x and
the elgenvalues J; are the variances along the PC directions

Note: Set R = (ry, ..., 1)) and D = diag(44, ... Ap) then
£=RDRT and R'TR=RRT =1,
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PCA and Dimension Reduction

Recall: For a matrix A € RFk with eigenvalues 4,, ..., 4 it holds that

k
tr(A) = D) 4
j=1

For the empirical covariance matrix £ and the variance of the j-th feature Var[x;]
p p
tr(E) = ) Var[x] = ) 4
j:l j=1

is called the total variation.

Using only the first m < p principal components leads to

A e+ A . .
At et m 000 of explained variance
L+..+4,
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PCA and Dimension Reduction: Example (1)

Variant of the MNIST handwritten digits dataset
(n = 7291, 16 x 16 greyscale images, i.e. p = 256)

Digit Frequency

6 5
0 0.16

1 0.14

2 0.10

3 0.09 - Wl

4 0.09

5 0.08 ! s 6
6 0.09

7 0.09

8 0.07

9 0.09
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PCA and Dimension Reduction: Example (11)

For standardized variables
tr(E) = p
Typical selection rule: Components with

bz ou® (=)

Scree plot
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PCA and Dimension Reduction: Example (1)

Using the selection rule leads to 44
components. Using the projection

creates a reconstruction of x.
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PCA and Dimension Reduction: Example (IV)

Projecting the digits onto the first two principal component directions gives a
very clear distinction of digits 0 and 1.

N 5
O
o 0
1
2. =B
Flf“
-10
-10 0 10 20

Digit - 0 - 1
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Importance of standardisation (1)

The overall issue: Subjectivity vs Objectivity

(Co-)variance is scale dependent: If we have a sample (size n) of variables x and
y, then their empirical covariance is

R _ _
Sxy = 1 Z(-xl - )=y
n=13

If x is scaled by a factorc, i.e. z=c- x, then
n

1 — —
Szy = — lzZl(Zl -z —Y)
1 &
= Qe xp—c- DG =Y =c sy
n—1{4~
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Importance of standardisation (I1)

(Co-)variance is scale dependent: s,, = c - 5., wherez =c - x

» By scaling variables we can therefore make them as large/influential or
small/insignificant as we want, which is a very subjective process

» By standardising variables we can get of rid of scaling and reach an
objective point-of-view

» Do we get rid of information?

» The typical range of a variable is compressed
» The overall shape of the data is preserved
» Outliers will still be outliers
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UCI Wine Data Set

UCI Wine Data Set’

» Results of a chemical analysis on multiple samples from three different
origins of wine
» n =178 samples (59 origin 1, 71 origin 2, 48 origin 3)

» p =13 features
» e.g. alcohol in %, ash, colour intensity, magnesium, ...

Thttps://archive.ics.uci.edu/ml/datasets/Wine
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Importance of standardisation (I11)

Raw Centred + Standardised
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Singular Value Decomposition




Singular Value Decomposition (SVD)

The singular value decomposition (SVD) of a matrix X € R™P, n > p, is
X = UDVT
where U € R™P and V € RP*P with
Uu'u=1, and V'v=vvl=1],
and D € RP*P is diagonal. Usually
diy 2 dyy > e 2 dpp

Note: Due to the orthogonality conditions on U and V

XXTU = UD?

XTXV = VD?
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SVD and PCA

In PCA the empirical covariance matrix £ is in focus, whereas SVD focuses on the
data matrix X directly.

Connection: For centred variables

$ =

T T T 2
XX=VDU UDV v D VT
n—1 n—1 n—1

The PC directions are in V and the eigenvalues of £ are dfj/(n —1).

Note: This is how PCA is typically calculated. SVD is a more general tool and is
used in many other contexts as well.
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SVD and best rank-g-approximation / dimension reduction

Write w; and v; for the columns of U and V, respectively. Then

p
X=UDV' =) dj; wy/

rank-1-matrix

Best rank-g-approximation: For g < p

q

— vl

Xy = Z djjuv;
j=1

with approximation error

2 p
— 2
||X_Xq||F = 2 djuvf Z dj
Jj=q+1 F Jj=q+1
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Connections to Discriminant
Analysis




Discriminant Analysis and the Inverse Covariance Matrix

From PCA or SVD we get £ = VDV where VIV = vvT =1, and
diyy > ... >dp, > 0. Then

2\—1 — VD—lvT — VD—1/2D—1/2vT — (ﬁ—l/Z)T 2—1/2

where (D_l/z)jj = 1/1 / dJJ and ’2\—1/2 =D 12yT,

In LDA the term involving the inverse covariance matrix is then
& . T o
- x-p=Ex-pT(E7) Tx-p)
AN T p— AN
=(Vix-@) D' (VIx-p)
1
jz=1 djj

Inverse of the eigenvalues can lead to numerical instability. -



Regularized Discriminant Analysis (RDA)

The empirical covariance matrix used by LDA can be stabilized:
£, :=2+ 21, = V(D + A1,)VT

where 4 > 0 is a tuning parameter.

» Using £, in LDA is called regularized discriminant analysis (RDA).
» Instead of 1/d;; the scaling factors are now 1/(d;; + A).
> For small d;; this can lead to numerical stability, whereas large d;; are not

much affected.
> For increasingly large A the d;; will have diminishing impact and RDA starts

to become nearest centroids.
» RDA can be used with QDA as well by considering:

1= 5 +1 8
QDA DA 20/21



Take-home message

» Principal component analysis gives a convenient decomposition of the
variance of the data

» Pre-processing (centring and standardisation) is important if data is
collected on different scales

» Singular value decomposition is a universal workhorse for in numerical
methods
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