Lecture 5: A first look at dimension reduction

Felix Held, Mathematical Sciences

MSA220/MVE440 Statistical Learning for Big Data

2nd April 2020

Principal Component Analysis

.

Projection onto a subspace

Assume $\mathbf{x} \in \mathbb{R}^p$. Given orthonormal vectors $\mathbf{b}_1, \dots, \mathbf{b}_m$, i.e.

$$\|\mathbf{b}_j\| = 1$$
 and $\mathbf{b}_j^T \mathbf{b}_k = 0$ for $j \neq k$

Projection

matrix

where m < p, the projection of \mathbf{x} onto the m-dimensional linear subspace $V_m = \operatorname{span}(\mathbf{b}_1, \dots, \mathbf{b}_m)$ is $\hat{\mathbf{x}} = \sum_{j=1}^m (\mathbf{x}^T \mathbf{b}_j) \mathbf{b}_j = \left(\sum_{j=1}^m \mathbf{b}_j \mathbf{b}_j^T\right) \mathbf{x}$

The projection is **orthogonal**, i.e.

$$(\mathbf{x} - \hat{\mathbf{x}})^T \mathbf{b}_j = 0$$

for all \mathbf{b}_j .

Rayleigh Quotient

Let $\mathbf{A} \in \mathbb{R}^{k imes k}$ be a symmetric matrix. For $\mathbf{0} \neq \mathbf{x} \in \mathbb{R}^k$ define $J(\mathbf{x}) = rac{\mathbf{x}^T \mathbf{A} \mathbf{x}}{\mathbf{x}^T \mathbf{x}}$

 $J(\mathbf{x})$ is called the **Rayleigh Quotient** for **A**.

```
Maximizing the Rayleigh Quotient
```

The maximization problem

```
\max_{\mathbf{x}} J(\mathbf{x}) \quad \text{subject to} \quad \mathbf{x}^T \mathbf{x} = 1
```

is solved by a **unit eigenvector** \mathbf{x} of \mathbf{A} corresponding to the **largest eigenvalue** λ of \mathbf{A} .

Note: $-\mathbf{x}$ is also a solution.

Goal: Given continuous data, find an orthogonal coordinate system such that the variance of the data is maximal along each direction.

Given data points $x_1, ..., x_n$ and a unit vector \mathbf{r} , the variance of the data along \mathbf{r} is

$$S(\mathbf{r}) = \sum_{l=1}^{n} (\mathbf{r}^{T} (\mathbf{x}_{l} - \overline{\mathbf{x}}))^{2} = (n-1)\mathbf{r}^{T} \widehat{\mathbf{\Sigma}} \mathbf{r}$$

where $\widehat{\Sigma}$ is the empirical covariance matrix.

Principal Component Analysis (PCA) (II)

Direction with maximal variance: Find r such that

 $\max_{\mathbf{r}} S(\mathbf{r}) \quad \text{subject to} \quad ||\mathbf{r}||^2 = \mathbf{r}^T \mathbf{r} = 1$

- This is the same problem as maximizing the **Rayleigh Quotient** for the matrix $\hat{\Sigma}$.
- The **solution** is the eigenvector \mathbf{r}_1 of $\hat{\boldsymbol{\Sigma}}$ corresponding to the largest eigenvalue λ_1 .

How do we find the other directions?

Project data on orthogonal complement of \mathbf{r}_1 , i.e.

$$\hat{\mathbf{x}}_l = \left(\mathbf{I}_p - \mathbf{r}_1 \mathbf{r}_1^T\right) \mathbf{x}_l$$

and repeat the procedure above.

Data is often pre-processed before it is used in computational methods. Given a data matrix $\mathbf{X} \in \mathbb{R}^{n \times p}$, let

- ▶ $\mathbf{m}_r \in \mathbb{R}^n$ be the vector of row-means,
- ▶ $\mathbf{m}_c \in \mathbb{R}^p$ be the vector of column-means, and
- ▶ $\mathbf{s} \in \mathbb{R}^p$ be the vector of per-column standard deviations.

Then (with $\mathbf{1}_n = (1, ..., 1)^{\mathsf{T}} \in \mathbb{R}^n$)

- the matrix $\mathbf{X} \mathbf{m}_r \mathbf{1}_p^{\mathsf{T}}$ has row means zero (row-centred),
- the matrix $\mathbf{X} \mathbf{1}_n \mathbf{m}_r^{\mathsf{T}}$ has column means zero (column-centred), and
- the matrix X diag(1/s) has column standard deviations one (standardised columns)

Computational Procedure:

- 1. Centre (and possibly standardise) the columns of the data matrix $\mathbf{X} \in \mathbb{R}^{n \times p}$
- 2. Calculate the **empirical covariance matrix** $\widehat{\Sigma} = \frac{1}{n-1} \mathbf{X}^T \mathbf{X}$
- 3. Determine the **eigenvalues** λ_j and corresponding orthonormal **eigenvectors** \mathbf{r}_j of $\widehat{\mathbf{\Sigma}}$ for j = 1, ..., p and order them such that

$$\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_p \geq 0$$

4. The vectors \mathbf{r}_j give the direction of the principal components (PC) $\mathbf{r}_j^T \mathbf{x}$ and the eigenvalues λ_j are the variances along the PC directions

Note: Set $\mathbf{R} = (\mathbf{r}_1, \dots, \mathbf{r}_p)$ and $\mathbf{D} = \operatorname{diag}(\lambda_1, \dots, \lambda_p)$ then

 $\widehat{\Sigma} = \mathbf{R}\mathbf{D}\mathbf{R}^T$ and $\mathbf{R}^T\mathbf{R} = \mathbf{R}\mathbf{R}^T = \mathbf{I}_p$

PCA and Dimension Reduction

Recall: For a matrix $\mathbf{A} \in \mathbb{R}^{k \times k}$ with eigenvalues $\lambda_1, \dots, \lambda_k$ it holds that

$$\operatorname{tr}(\mathbf{A}) = \sum_{j=1}^{\kappa} \lambda_j$$

For the empirical covariance matrix $\widehat{\Sigma}$ and the variance of the *j*-th feature $\operatorname{Var}[x_j]$ $\operatorname{tr}(\widehat{\Sigma}) = \sum_{i=1}^p \operatorname{Var}[x_j] = \sum_{i=1}^p \lambda_j$

is called the **total variation**.

Using only the first m < p principal components leads to $\frac{\lambda_1 + ... + \lambda_m}{\lambda_1 + ... + \lambda_p} \cdot 100\%$ of explained variance

PCA and Dimension Reduction: Example (I)

Variant of the MNIST handwritten digits dataset

 $(n = 7291, 16 \times 16 \text{ greyscale images, i.e. } p = 256)$

Digit	Frequency
0	0.16
1	0.14
2	0.10
3	0.09
4	0.09
5	0.08
6	0.09
7	0.09
8	0.07
9	0.09

For standardized variables

 $\operatorname{tr}(\widehat{\boldsymbol{\Sigma}}) = p$

Typical selection rule: Components with

$$\lambda_j \ge \frac{1}{p} \operatorname{tr}(\widehat{\Sigma}) \quad (=1)$$

Visualisations of the first four principal components

Using the selection rule leads to 44 components. Using the projection

$$\hat{\mathbf{x}} = \left(\sum_{j=1}^{44} \mathbf{r}_j \mathbf{r}_j^T\right) \mathbf{x}$$

creates a **reconstruction** of \mathbf{x} .

PCA and Dimension Reduction: Example (IV)

Projecting the digits onto the first two principal component directions gives a very clear distinction of digits 0 and 1.

The overall issue: Subjectivity vs Objectivity

(Co-)variance is scale dependent: If we have a sample (size *n*) of variables *x* and *y*, then their empirical covariance is

$$s_{xy} = \frac{1}{n-1} \sum_{l=1}^{n} (x_l - \overline{x})(y_l - \overline{y})$$

If x is scaled by a factor c, i.e. $z = c \cdot x$, then

$$s_{zy} = \frac{1}{n-1} \sum_{l=1}^{n} (z_l - \overline{z})(y_l - \overline{y})$$
$$= \frac{1}{n-1} \sum_{l=1}^{n} (c \cdot x_l - c \cdot \overline{x})(y_l - \overline{y}) = c \cdot s_{xy}$$

(Co-)variance is scale dependent: $s_{zy} = c \cdot s_{xy}$ where $z = c \cdot x$

- By scaling variables we can therefore make them as large/influential or small/insignificant as we want, which is a very subjective process
- By standardising variables we can get of rid of scaling and reach an objective point-of-view
- Do we get rid of information?
 - ► The **typical range** of a variable is compressed
 - ► The overall shape of the data is preserved
 - Outliers will still be outliers

UCI Wine Data Set¹

- Results of a chemical analysis on multiple samples from three different origins of wine
- ▶ n = 178 samples (59 origin 1, 71 origin 2, 48 origin 3)
- p = 13 features
 - e.g. alcohol in %, ash, colour intensity, magnesium, ...

¹https://archive.ics.uci.edu/ml/datasets/Wine

Importance of standardisation (III)

Singular Value Decomposition

The singular value decomposition (SVD) of a matrix $\mathbf{X} \in \mathbb{R}^{n \times p}$, $n \ge p$, is $\mathbf{X} = \mathbf{U}\mathbf{D}\mathbf{V}^{T}$

where $\mathbf{U} \in \mathbb{R}^{n \times p}$ and $\mathbf{V} \in \mathbb{R}^{p \times p}$ with

$$\mathbf{U}^T \mathbf{U} = \mathbf{I}_p$$
 and $\mathbf{V}^T \mathbf{V} = \mathbf{V} \mathbf{V}^T = \mathbf{I}_p$

and $\mathbf{D} \in \mathbb{R}^{p \times p}$ is diagonal. Usually

$$d_{11} \ge d_{22} \ge \dots \ge d_{pp}$$

Note: Due to the orthogonality conditions on ${\bf U}$ and ${\bf V}$

 $\mathbf{X}\mathbf{X}^T\mathbf{U} = \mathbf{U}\mathbf{D}^2$ $\mathbf{X}^T\mathbf{X}\mathbf{V} = \mathbf{V}\mathbf{D}^2$

In PCA the empirical covariance matrix $\widehat{\Sigma}$ is in focus, whereas SVD focuses on the data matrix X directly.

Connection: For centred variables

$$\widehat{\boldsymbol{\Sigma}} = \frac{\mathbf{X}^T \mathbf{X}}{n-1} = \frac{\mathbf{V} \mathbf{D} \mathbf{U}^T \mathbf{U} \mathbf{D} \mathbf{V}^T}{n-1} = \mathbf{V} \left(\frac{\mathbf{D}^2}{n-1} \right) \mathbf{V}^T$$

The PC directions are in **V** and the eigenvalues of $\hat{\Sigma}$ are $d_{jj}^2/(n-1)$.

Note: This is how PCA is typically calculated. SVD is a **more general tool** and is used in many other contexts as well.

SVD and best rank-q-approximation / dimension reduction

Write \mathbf{u}_j and \mathbf{v}_j for the columns of \mathbf{U} and \mathbf{V} , respectively. Then

$$\mathbf{X} = \mathbf{U}\mathbf{D}\mathbf{V}^T = \sum_{j=1}^p d_{jj} \underbrace{\mathbf{u}_j \mathbf{v}_j^T}_{\text{rank-1-matrix}}$$

Best rank-q**-approximation:** For q < p

$$\mathbf{X}_{\boldsymbol{q}} = \sum_{j=1}^{\boldsymbol{q}} d_{jj} \mathbf{u}_j \mathbf{v}_j^T$$

with approximation error

$$\left\|\mathbf{X} - \mathbf{X}_{q}\right\|_{F}^{2} = \left\|\sum_{j=q+1}^{p} d_{jj} \mathbf{u}_{j} \mathbf{v}_{j}^{T}\right\|_{F}^{2} = \sum_{j=q+1}^{p} d_{j}^{2}$$

Connections to Discriminant Analysis

Discriminant Analysis and the Inverse Covariance Matrix

From PCA or SVD we get $\widehat{\Sigma} = \mathbf{V}\mathbf{D}\mathbf{V}^T$ where $\mathbf{V}^T\mathbf{V} = \mathbf{V}\mathbf{V}^T = \mathbf{I}_p$ and $d_{11} \ge ... \ge d_{pp} \ge 0$. Then

$$\widehat{\boldsymbol{\Sigma}}^{-1} = \mathbf{V}\mathbf{D}^{-1}\mathbf{V}^T = \mathbf{V}\mathbf{D}^{-1/2}\mathbf{D}^{-1/2}\mathbf{V}^T = \left(\widehat{\boldsymbol{\Sigma}}^{-1/2}\right)^T \widehat{\boldsymbol{\Sigma}}^{-1/2}$$

where $(\mathbf{D}^{-1/2})_{jj} := 1/\sqrt{d_{jj}}$ and $\widehat{\boldsymbol{\Sigma}}^{-1/2} := \mathbf{D}^{-1/2}\mathbf{V}^T$.

In LDA the term involving the inverse covariance matrix is then

$$(\mathbf{x} - \hat{\boldsymbol{\mu}})^T \widehat{\boldsymbol{\Sigma}}^{-1} (\mathbf{x} - \hat{\boldsymbol{\mu}}) = (\mathbf{x} - \hat{\boldsymbol{\mu}})^T \left(\widehat{\boldsymbol{\Sigma}}^{-1/2}\right)^T \widehat{\boldsymbol{\Sigma}}^{-1/2} (\mathbf{x} - \hat{\boldsymbol{\mu}})$$
$$= \left(\mathbf{V}^T (\mathbf{x} - \hat{\boldsymbol{\mu}})\right)^T \mathbf{D}^{-1} \left(\mathbf{V}^T (\mathbf{x} - \hat{\boldsymbol{\mu}})\right)$$
$$= \sum_{j=1}^{T} \frac{1}{d_{jj}} (\tilde{x}_j - \tilde{\mu}_j)^2$$

Inverse of the eigenvalues can lead to **numerical instability**.

The empirical covariance matrix used by LDA can be **stabilized**:

$$\widehat{\boldsymbol{\Sigma}}_{\lambda} := \widehat{\boldsymbol{\Sigma}} + \lambda \mathbf{I}_p = \mathbf{V}(\mathbf{D} + \lambda \mathbf{I}_p)\mathbf{V}^T$$

where $\lambda > 0$ is a tuning parameter.

- Using $\widehat{\Sigma}_{\lambda}$ in LDA is called **regularized discriminant analysis (RDA)**.
- ► Instead of $1/d_{jj}$ the scaling factors are now $1/(d_{jj} + \lambda)$.
- For small d_{jj} this can lead to **numerical stability**, whereas large d_{jj} are not much affected.
- For increasingly large λ the d_{jj} will have diminishing impact and RDA starts to become nearest centroids.
- RDA can be used with QDA as well by considering:

$$\widehat{\Sigma}_{i,\lambda} := \underbrace{\widehat{\Sigma}_i}_{\text{QDA}} + \lambda \underbrace{\widehat{\Sigma}}_{\text{LDA}}$$

- Principal component analysis gives a convenient decomposition of the variance of the data
- Pre-processing (centring and standardisation) is important if data is collected on different scales
- Singular value decomposition is a universal workhorse for in numerical methods