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Principal Component Analysis



Projection onto a subspace

Assume 𝐱 ∈ ℝ𝑝. Given orthonormal vectors 𝐛1, … , 𝐛𝑚, i.e.

‖𝐛𝑗‖ = 1 and 𝐛𝑇𝑗 𝐛𝑘 = 0 for 𝑗 ≠ 𝑘

where 𝑚 < 𝑝, the projection of 𝐱 onto the 𝑚-dimensional linear subspace
𝑉𝑚 = span(𝐛1, … , 𝐛𝑚) is

𝐱̂ =
𝑚
∑
𝑗=1

(𝐱𝑇𝐛𝑗)𝐛𝑗 = (
𝑚
∑
𝑗=1

𝐛𝑗𝐛𝑇𝑗 )
⏟⎵⎵⏟⎵⎵⏟
Projection
matrix

𝐱

The projection is orthogonal, i.e.

(𝐱 − 𝐱̂)𝑇𝐛𝑗 = 0

for all 𝐛𝑗 .
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Rayleigh Quotient

Let 𝐀 ∈ ℝ𝑘×𝑘 be a symmetric matrix. For 𝟎 ≠ 𝐱 ∈ ℝ𝑘 define

𝐽(𝐱) = 𝐱𝑇𝐀𝐱
𝐱𝑇𝐱

𝐽(𝐱) is called the Rayleigh Quotient for 𝐀.
Maximizing the Rayleigh Quotient
The maximization problem

max
𝐱

𝐽(𝐱) subject to 𝐱𝑇𝐱 = 1

is solved by a unit eigenvector 𝐱 of 𝐀 corresponding to the largest eigenvalue
𝜆 of 𝐀.

Note: −𝐱 is also a solution.
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Principal Component Analysis (PCA) (I)

Goal: Given continuous data, find an orthogonal coordinate system such that
the variance of the data is maximal along each direction.

Given data points 𝐱1, … , 𝐱𝑛 and a unit vector 𝐫, the
variance of the data along 𝐫 is

𝑆(𝐫) =
𝑛
∑
𝑙=1
(𝐫𝑇(𝐱𝑙 − 𝐱))2 = (𝑛 − 1)𝐫𝑇𝚺̂𝐫

where 𝚺 is the empirical covariance matrix.
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Principal Component Analysis (PCA) (II)

Direction with maximal variance: Find 𝐫 such that
max
𝐫

𝑆(𝐫) subject to ‖𝐫‖2 = 𝐫𝑇𝐫 = 1

▶ This is the same problem as maximizing the Rayleigh Quotient for the
matrix 𝚺.

▶ The solution is the eigenvector 𝐫1 of 𝚺 corresponding to the largest
eigenvalue 𝜆1.

How do we find the other directions?
Project data on orthogonal complement of 𝐫1, i.e.

𝐱̂𝑙 = (𝐈𝑝 − 𝐫1𝐫𝑇1 ) 𝐱𝑙
and repeat the procedure above.
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Intermezzo: Pre-processing

Data is often pre-processed before it is used in computational methods.

Given a data matrix 𝐗 ∈ ℝ𝑛×𝑝, let

▶ 𝐦𝑟 ∈ ℝ𝑛 be the vector of row-means,
▶ 𝐦𝑐 ∈ ℝ𝑝 be the vector of column-means, and
▶ 𝐬 ∈ ℝ𝑝 be the vector of per-column standard deviations.

Then (with 𝟏𝑛 = (1, … , 1)⊤ ∈ ℝ𝑛)

▶ the matrix 𝐗 −𝐦𝑟𝟏⊤𝑝 has row means zero (row-centred),
▶ the matrix 𝐗 − 𝟏𝑛𝐦⊤

𝑟 has column means zero (column-centred), and
▶ the matrix 𝐗diag(1/𝐬) has column standard deviations one (standardised
columns)
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Principal Component Analysis (PCA) (III)

Computational Procedure:

1. Centre (and possibly standardise) the columns of the data matrix 𝐗 ∈ ℝ𝑛×𝑝

2. Calculate the empirical covariance matrix 𝚺 = 1
𝑛 − 1𝐗

𝑇𝐗
3. Determine the eigenvalues 𝜆𝑗 and corresponding orthonormal eigenvectors

𝐫𝑗 of 𝚺̂ for 𝑗 = 1,… , 𝑝 and order them such that

𝜆1 ≥ 𝜆2 ≥ … ≥ 𝜆𝑝 ≥ 0
4. The vectors 𝐫𝑗 give the direction of the principal components (PC) 𝐫𝑇𝑗 𝐱 and
the eigenvalues 𝜆𝑗 are the variances along the PC directions

Note: Set 𝐑 = (𝐫1, … , 𝐫𝑝) and 𝐃 = diag(𝜆1, … , 𝜆𝑝) then
𝚺 = 𝐑𝐃𝐑𝑇 and 𝐑𝑇𝐑 = 𝐑𝐑𝑇 = 𝐈𝑝

6/21



PCA and Dimension Reduction

Recall: For a matrix 𝐀 ∈ ℝ𝑘×𝑘 with eigenvalues 𝜆1, … , 𝜆𝑘 it holds that

tr(𝐀) =
𝑘
∑
𝑗=1

𝜆𝑗

For the empirical covariance matrix 𝚺̂ and the variance of the 𝑗-th feature Var[𝑥𝑗]

tr(𝚺) =
𝑝
∑
𝑗=1

Var[𝑥𝑗] =
𝑝
∑
𝑗=1

𝜆𝑗

is called the total variation.

Using only the first 𝑚 < 𝑝 principal components leads to
𝜆1 + … + 𝜆𝑚
𝜆1 + … + 𝜆𝑝

⋅ 100% of explained variance
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PCA and Dimension Reduction: Example (I)

Variant of the MNIST handwritten digits dataset
(𝑛 = 7291, 16 × 16 greyscale images, i.e. 𝑝 = 256)

Digit Frequency

0 0.16
1 0.14
2 0.10
3 0.09
4 0.09
5 0.08
6 0.09
7 0.09
8 0.07
9 0.09

7 3 6

6 5 4
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PCA and Dimension Reduction: Example (II)

For standardized variables

tr(𝚺) = 𝑝

Typical selection rule: Components with

𝜆𝑗 ≥
1
𝑝 tr(𝚺) (= 1)
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PCA and Dimension Reduction: Example (III)

Using the selection rule leads to 44
components. Using the projection

𝐱̂ = (
44
∑
𝑗=1

𝐫𝑗𝐫𝑇𝑗 )𝐱

creates a reconstruction of 𝐱.

4 7

6 5
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PCA and Dimension Reduction: Example (IV)

Projecting the digits onto the first two principal component directions gives a
very clear distinction of digits 0 and 1.
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Importance of standardisation (I)

The overall issue: Subjectivity vs Objectivity

(Co-)variance is scale dependent: If we have a sample (size 𝑛) of variables 𝑥 and
𝑦, then their empirical covariance is

𝑠𝑥𝑦 =
1

𝑛 − 1
𝑛
∑
𝑙=1
(𝑥𝑙 − 𝑥)(𝑦𝑙 − 𝑦)

If 𝑥 is scaled by a factor 𝑐, i.e. 𝑧 = 𝑐 ⋅ 𝑥, then

𝑠𝑧𝑦 =
1

𝑛 − 1
𝑛
∑
𝑙=1
(𝑧𝑙 − 𝑧)(𝑦𝑙 − 𝑦)

= 1
𝑛 − 1

𝑛
∑
𝑙=1
(𝑐 ⋅ 𝑥𝑙 − 𝑐 ⋅ 𝑥)(𝑦𝑙 − 𝑦) = 𝑐 ⋅ 𝑠𝑥𝑦
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Importance of standardisation (II)

(Co-)variance is scale dependent: 𝑠𝑧𝑦 = 𝑐 ⋅ 𝑠𝑥𝑦 where 𝑧 = 𝑐 ⋅ 𝑥

▶ By scaling variables we can therefore make them as large/influential or
small/insignificant as we want, which is a very subjective process

▶ By standardising variables we can get of rid of scaling and reach an
objective point-of-view

▶ Do we get rid of information?
▶ The typical range of a variable is compressed
▶ The overall shape of the data is preserved
▶ Outliers will still be outliers

13/21



UCI Wine Data Set

UCI Wine Data Set1

▶ Results of a chemical analysis on multiple samples from three different
origins of wine

▶ 𝑛 = 178 samples (59 origin 1, 71 origin 2, 48 origin 3)
▶ 𝑝 = 13 features

▶ e.g. alcohol in %, ash, colour intensity, magnesium, . . .

1https://archive.ics.uci.edu/ml/datasets/Wine
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Importance of standardisation (III)

●●

●

●

●

●

●●

●●

●

●
●

●

●

● ●

●

●

●
●●

●●

●●

●
●

●

●

●

●

●

●

●

●
●

●
●

●●

●
●

●

●

● ●
●

●

●

●

●
●

●

●
●

●

● ●

●

●

●

●

●
●

●

●●

●●

●

●
●

●

●

● ●

●

●

●

●

●
●

●●
●

●
●

●
●

●●
●

●
●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●
●●

●

● ●

●
●

●

● ●● ● ●

●

●

●
●

●●
●

●
●●

●
●●●

●

●●

● ●

●

● ●

●
●●

●

●●
●

●

●

●
●

●

●

●

●
●

●

●●
●

●

●
●

●
●●

●●

●500

1000

1500

11 12 13 14 15
Alcohol

P
ro

lin
e

Raw

●●

●

●

●

●

●●

●●

●

●
●

●

●

● ●

●

●

●
●●

●●

●●

●
●

●

●

●

●

●

●

●

●
●

●
●

●●

●
●

●

●

● ●
●

●

●

●

●
●

●

●
●

●

● ●

●

●

●

●

●
●

●

●●

●●

●

●
●

●

●

● ●

●

●

●

●

●
●

●●
●

●
●

●
●

●●
●

●
●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●
●●

●

● ●

●
●

●

● ●● ● ●

●

●

●
●

●●
●

●
●●

●
●●●

●

● ●

● ●

●

● ●

●
●●

●

●●
●

●

●

●
●

●

●

●

●
●

●

●●
●

●

●
●

●
●●

●●

●

−1

0

1

2

3

−2 −1 0 1 2
Alcohol

P
ro

lin
e

Centred + Standardised

●

●●

●

●

●

●

●

●●●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●●

●

●●●

●

●

●

●

●

● ●

●

●

●

●

●●●

● ●●●

●●

●●

●
●

●

●

●

●

●
●

●
●

●

●

●●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●●●

●

●
●

●

●

●

●
●
●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

● ●●
●

● ●

● ●●

● ●

●

●

●

●

●

●●
●

●

●●

●

−60

−40

−20

0

20

−1000 −500 0 500
PC1

P
C

2

●

●

●

●

●

●

●
●

●●

●

●●

●

●
●

●

●

●

●
●

●
●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●
●

● ●

●

●

●

●

●

●● ●

●

●

●
●

●

●
●

●

●

●

●

●

●
●●

●

●

●
●

●

●●

●

●

●

●

●
● ●

●

●

●
●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●
● ●●

●

●
●

●
●● ●● ●●

●

● ●

●
●

●
●

●

●

●

●

●●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

−4

−2

0

2

−2.5 0.0 2.5
PC1

P
C

2
15/21



Singular Value Decomposition



Singular Value Decomposition (SVD)

The singular value decomposition (SVD) of a matrix 𝐗 ∈ ℝ𝑛×𝑝, 𝑛 ≥ 𝑝, is

𝐗 = 𝐔𝐃𝐕𝑇

where 𝐔 ∈ ℝ𝑛×𝑝 and 𝐕 ∈ ℝ𝑝×𝑝 with

𝐔𝑇𝐔 = 𝐈𝑝 and 𝐕𝑇𝐕 = 𝐕𝐕𝑇 = 𝐈𝑝
and 𝐃 ∈ ℝ𝑝×𝑝 is diagonal. Usually

𝑑11 ≥ 𝑑22 ≥ … ≥ 𝑑𝑝𝑝
Note: Due to the orthogonality conditions on 𝐔 and 𝐕

𝐗𝐗𝑇𝐔 = 𝐔𝐃2

𝐗𝑇𝐗𝐕 = 𝐕𝐃2
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SVD and PCA

In PCA the empirical covariance matrix 𝚺̂ is in focus, whereas SVD focuses on the
data matrix 𝐗 directly.

Connection: For centred variables

𝚺 = 𝐗𝑇𝐗
𝑛 − 1 =

𝐕𝐃𝐔𝑇𝐔𝐃𝐕𝑇

𝑛 − 1 = 𝐕( 𝐃2

𝑛 − 1)𝐕
𝑇

The PC directions are in 𝐕 and the eigenvalues of 𝚺̂ are 𝑑2𝑗𝑗/(𝑛 − 1).

Note: This is how PCA is typically calculated. SVD is a more general tool and is
used in many other contexts as well.
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SVD and best rank-𝑞-approximation / dimension reduction

Write 𝐮𝑗 and 𝐯𝑗 for the columns of 𝐔 and 𝐕, respectively. Then

𝐗 = 𝐔𝐃𝐕𝑇 =
𝑝
∑
𝑗=1

𝑑𝑗𝑗 𝐮𝑗𝐯𝑇𝑗⏟
rank-1-matrix

Best rank-𝑞-approximation: For 𝑞 < 𝑝

𝐗𝑞 =
𝑞
∑
𝑗=1

𝑑𝑗𝑗𝐮𝑗𝐯𝑇𝑗

with approximation error

‖
‖𝐗 − 𝐗𝑞

‖
‖
2

𝐹
=
‖
‖‖‖

𝑝
∑

𝑗=𝑞+1
𝑑𝑗𝑗𝐮𝑗𝐯𝑇𝑗

‖
‖‖‖

2

𝐹

=
𝑝
∑

𝑗=𝑞+1
𝑑2𝑗
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Connections to Discriminant
Analysis



Discriminant Analysis and the Inverse Covariance Matrix

From PCA or SVD we get 𝚺̂ = 𝐕𝐃𝐕𝑇 where 𝐕𝑇𝐕 = 𝐕𝐕𝑇 = 𝐈𝑝 and
𝑑11 ≥ … ≥ 𝑑𝑝𝑝 ≥ 0. Then

𝚺−1 = 𝐕𝐃−1𝐕𝑇 = 𝐕𝐃−1/2𝐃−1/2𝐕𝑇 = (𝚺̂−1/2)
𝑇
𝚺̂−1/2

where (𝐃−1/2)𝑗𝑗 ∶= 1/√𝑑𝑗𝑗 and 𝚺−1/2 ∶= 𝐃−1/2𝐕𝑇 .

In LDA the term involving the inverse covariance matrix is then

(𝐱 − 𝝁)𝑇𝚺̂−1(𝐱 − 𝝁) = (𝐱 − 𝝁)𝑇 (𝚺−1/2)
𝑇
𝚺−1/2(𝐱 − 𝝁)

= (𝐕𝑇(𝐱 − 𝝁))𝑇 𝐃−1 (𝐕𝑇(𝐱 − 𝝁))

= ∑
𝑗=1

1
𝑑𝑗𝑗

( ̃𝑥𝑗 − 𝜇̃𝑗)2

Inverse of the eigenvalues can lead to numerical instability. 19/21



Regularized Discriminant Analysis (RDA)

The empirical covariance matrix used by LDA can be stabilized:
𝚺̂𝜆 ∶= 𝚺 + 𝜆𝐈𝑝 = 𝐕(𝐃 + 𝜆𝐈𝑝)𝐕𝑇

where 𝜆 > 0 is a tuning parameter.

▶ Using 𝚺̂𝜆 in LDA is called regularized discriminant analysis (RDA).
▶ Instead of 1/𝑑𝑗𝑗 the scaling factors are now 1/(𝑑𝑗𝑗 + 𝜆).
▶ For small 𝑑𝑗𝑗 this can lead to numerical stability, whereas large 𝑑𝑗𝑗 are not
much affected.

▶ For increasingly large 𝜆 the 𝑑𝑗𝑗 will have diminishing impact and RDA starts
to become nearest centroids.

▶ RDA can be used with QDA as well by considering:

𝚺𝑖,𝜆 ∶= 𝚺̂𝑖⏟
QDA

+𝜆 𝚺⏟
LDA 20/21



Take-home message

▶ Principal component analysis gives a convenient decomposition of the
variance of the data

▶ Pre-processing (centring and standardisation) is important if data is
collected on different scales

▶ Singular value decomposition is a universal workhorse for in numerical
methods
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