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1 Introduction
The purpose of this document is to give an overview over classical/traditional matrix
factorisation techniques and how they are interpreted. For a start I want to focus on the
three classical techniques Principal Component Analysis (PCA), Independent Compo-
nent Analysis (ICA), and Canonical Correlation Analysis (CCA). As a working tool,
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the Rayleigh quotient and the Singular Value Decomposition (SVD) of a matrix will be
introduced as well.
The exposition assumes that the reader has a background in multivariate calculus and
basic multivariate statistics. The material presented here is somewhat standard and
presented in many books and other material across the internet. Some of my sources
were Falk et al. (2002), Härdle and Simar (2007) and Murphy (2012).

2 Rayleigh quotient
2.1 The basic Rayleigh quotient
The Rayleigh quotient for a symmetric matrix A ∈ ℝp×p is a useful computational tool.
It is defined for vectors 0 ≠ x ∈ ℝp as

J (x) = x⊤Ax
x⊤x

. (1)
Note that it is enough to normalize x and calculate the Rayleigh quotient for the normal-
ized vector since

J (x) = x⊤Ax
x⊤x

=
‖x‖2

‖x‖2
x⊤Ax
x⊤x

=
x
‖x‖

⊤A x
‖x‖

x
‖x‖

⊤ x
‖x‖

= x
‖x‖

⊤
A x
‖x‖

. (2)

One says the Rayleigh quotient is scale-invariant. A common task is to find a x̂ that
maximizes the Rayleigh quotient, i.e.

x̂ ∈ argmax
x≠0

x⊤Ax
x⊤x

. (3)

As noted above the Rayleigh quotient is scale-invariant. Therefore, for any solution x̂
of the maximization problem in Eq. (3) the vector c ⋅ x̂ for arbitrary c ∈ ℝ∖{0} is a
solution as well. To restrict the space of possible solutions and to make the optimization
problem identifiable we require that ‖x̂‖ = 1. This results in the equality-constrained
minimization problem

min
x≠0

−x⊤Ax subject to x⊤x = 1. (4)

The Lagrangian (Boyd and Vandenberghe, 2004, Section 5.1) of this constrained maxi-
mization problem is

L(x, �) = −x⊤Ax + �(x⊤x − 1) (5)
where � is a Lagrange multiplier. The Lagrange dual function is therefore

g(�) = inf
x≠0

x⊤(−A + �Ip)x − � (6)

For the infimum to be finite −A + �Ip has to be positive semi-definite (psd). If −A +
�Ip has at least one negative eigenvalue � with corresponding eigenvector u, then
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c2u⊤(−A + �Ip)u = c2�‖u‖22 → −∞ for c → ∞. This implies that the infimum is −∞
in the non-psd case.
Since A is symmetric, let U ∈ ℝp×p contain an orthonormal basis of eigenvectors of A,
with the i-th basis vector ui in the i-th row of U , and D the corresponding matrix of
eigenvalues of A. Then A = U⊤DU and

x⊤(−A + �Ip)x = x⊤U⊤(−D + �Ip)Ux =
p
∑

i=1
(� − �i)(u⊤i x)

2. (7)

This implies especially that the matrix −A+�Ip is psd if and only if � ≥ �max(A) where
�max(A) is the largest eigenvalue of A. Since every x =

∑p
i=1 aiui for some ai it follows

that ∑p
i=1(� − �i)(u

⊤
i cx)

2 = c2
∑p
i=1(� − �i)a

2
i → 0 for c → 0. This implies that the

infimum is −� for � ≥ �max(A) in the psd case.
The Lagrange dual function for the minimization problem in Eq. (4) is therefore given
by

g(�) =

{

−� if � ≥ �max(A)
−∞ otherwise (8)

which implies the dual problem
sup
�

−� subject to � ≥ �max(A). (9)

Clearly, this optimization problem is solved for �̂ = �max(A).
It now follows that, since the optimal function value d∗ = −�max(A) of the dual problemis a lower bound on the optimal function value p∗ of the primal problem (Eq. (4)), we
get by choosing u as an unit eigenvector corresponding to �max(A)

− �max(A) ≤ p∗ ≤ −u⊤Au = −�max(A). (10)
This shows that u ∈ argmaxx≠0 J (x). Note that −u is also a solution. In case the
eigenvalue �max(A) appears repeatedly, any u in its eigenspace with length ‖u‖ = 1 will
be a solution of the primal problem in Eq. (4).
A more hand-waving derivation is as follows: We want to find a maximum of L(x, �)
with respect to x and � will be determined along the way. The gradient of L(x, �) with
respect to x is

)L(x, �)
)x

= −Ax + �x (11)
and setting Eq. (11) equal to 0 leads to

Ax = �x. (12)
Since x ≠ 0 this is an eigenvalue equation and � has to be one of p eigenvalues of A.
Using Eq. (12) in our original optimization problem Eq. (4) gives

max
x, ‖x‖=1

x⊤Ax = max
x, ‖x‖=1
Ax=�x

�x⊤x = max
x, ‖x‖=1
Ax=�x

� (13)
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The optimization problem is therefore solved by an eigenvector x ofAwith ‖x‖ = 1 such
that the corresponding eigenvalue � is maximal among all eigenvalues of A. Note that
there are always two solutions to this problem. For every x with ‖x‖ = 1 maximizing
the Rayleigh quotient, the sign-flipped vector −x is a solution with ‖x‖ = 1 as well.
Note that since A is real and symmetric, a theorem from linear algebra guarantees the
existence of p real eigenvalues.

2.2 The generalised Rayleigh quotient
A variant of the Rayleigh quotient assumes that there are two symmetric matrices
A,B ∈ ℝp×p where B is positive definite1. The Rayleigh quotient is then defined for
0 ≠ x ∈ ℝp as

J (x) = x⊤Ax
x⊤Bx

. (14)
As above, J (x) is invariant to scaling of x and to make the optimization problem uniquely
solvable (up to inverting the direction of the solution over the origin) we need to fixate a
scaling.
From linear algebra we know that there exists an orthogonal matrix2 U ∈ ℝp×p and
a diagonal matrix D ∈ ℝp×p such that B = UDU⊤. Define D1∕2 ∶= diag(

√

Dii, i =
1,… , p) and B1∕2 ∶= UD1∕2U⊤, then B1∕2B1∕2 = B3. By convention, the inverse of
B1∕2 is denoted as B−1∕2.
To fixate a scaling for the input to the generalised Rayleigh quotient we require

‖B1∕2x‖ = x⊤Bx = 1, (15)
which leads to the optimization problem4

max
x
x⊤Ax subject to x⊤Bx = 1. (17)

Since B1∕2 is of full-rank5, we can make the change of variablew← B1∕2x in Eq. (17),
resulting in

max
w
w⊤B−1∕2AB−1∕2w subject to w⊤w = 1. (18)

This is the optimization problem for the basic Rayleigh quotient with symmetric matrix
B−1∕2AB−1∕2. Any ŵwhich is a unit eigenvector corresponding to �max(B−1∕2AB−1∕2)

1i.e. all eigenvalues are positive, x⊤Bx > 0 for all x ≠ 0 and B is invertible. Therefore, the numerator of
the general Rayleigh quotient is non-zero and positive as long as x ≠ 0.

2UU⊤ = U⊤U = In3B1∕2 is sometimes called the matrix square root of B.
4Note that this is equivalent to solving

max
x
x⊤Ax
x⊤Bx

subject to x⊤x = 1 (16)
since for every solution x̂ to Eq. (16) the vector z = x̂∕‖B1∕2x̂‖ also maximizes the Rayleigh quotient with
z⊤Bz = 1 and is therefore a solution to Eq. (17). On the other hand, every solution x̂ to Eq. (17) induces a
solution to Eq. (16) by setting ẑ = x̂∕‖x̂‖.

5Follows from B being psd.
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is therefore a solution to Eq. (18). Corresponding solutions for Eq. (17) can be recovered
by setting x̂ = B−1∕2ŵ.

3 Principal component analysis (PCA)
When we have quantitative data, a natural choice of coordinate system is one where the
axes point in the directions of largest variance and are orthogonal to each other. It is
also natural to sort these in descending order, since most information will be gained by
observing the most variable direction. Assume we have a data matrix X ∈ ℝn×p with
rows x⊤i . To determine the first principal component we are looking for a direction r1
(a unit vector, i.e. ‖r1‖ = 1) in which the variance of X is maximal. Define si = r⊤1 xi,which is the coefficient of xi projected onto r1. The variance in the direction of r1 is

n
∑

i=1
(si − s)2 =

n
∑

i=1

(

r⊤i (xi − x)
)2 (19)

where x is the mean over all observations. We want to find r1 such that the variance in
Eq. (19) becomes maximal. Note that

n
∑

i=1

(

r⊤(xi − x)
)2 =

n
∑

i=1
r⊤(xi − x)(xi − x)⊤r

= r⊤
n
∑

i=1
(xi − x)(xi − x)⊤r

= (n − 1) r⊤�̂r

(20)

where �̂ is the empirical covariance matrix of the data. Since �̂ is a symmetric matrix
and it is required that ‖r‖ = 1, maximizing Eq. (20) is equivalent to solving the basic
Rayleigh quotient maximisation problem in Section 2. It therefore follows that r1 is an
eigenvector of �̂ corresponding to its largest eigenvalue �1. Since we required r1 to be
of length one, this problem is solved uniquely up to sign (i.e. −r1 is also a solution).
Note especially that the variance of the si, that we tried to maximize in the original
problem (Eq. (19)) is equal to �1.
Assume we have found the first m − 1 < p principal components r1,… , rm−1 corre-
sponding to the eigenvalues �1 ≥ ⋯ ≥ �m−1 of �̂. From linear algebra we know that a
square matrix P is an orthogonal projection matrix if

P 2 = P = P ⊤. (21)
Projecting a vector onto r1,… , rm−1 is accomplished by the orthogonal projection matrix

P =
m−1
∑

i=1
rir⊤i (22)
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Another property of orthogonal projection matrices is that I − P is an orthogonal
projection matrix onto the orthogonal complement of the subspace that P was projecting
on, i.e. I − P1 is a projection matrix onto the space of vectors which are orthogonal to
r1,… , rm−1.
Project the data into this space, after having found the first m − 1 principal components,
i.e. define

Xm−1 = X

(

Ip −
m−1
∑

i=1
rir⊤i

)

(23)

and
�̂m−1 =

X⊤
m−1Xm−1

n − 1
=

(

Ip −
m−1
∑

i=1
rir⊤i

)⊤

�̂
(

Ip −
m−1
∑

i=1
rir⊤i

)

. (24)

The new data matrix is constant (no variance) along the directions of r1,… , rm−1.Finding the most variable direction now means to solve
max
r
r⊤�̂m−1r subject to r⊤r = 1. (25)

This is solved by an eigenvector rm of �̂m−1 corresponding to its largest eigenvalue �m,
i.e. �̂m−1rm = �mrm. It turns out that for i = 1,… , m − 1

r⊤mri =
1
�m
r⊤m�̂m−1ri

= 1
�m
r⊤m

(

Ip −
m−1
∑

j=1
rjr⊤j

)⊤

�̂
(

Ip −
m−1
∑

j=1
rjr⊤j

)

ri

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
=0

= 0 (26)

as well as
�mrm = �̂m−1rm

=

(

Ip −
m−1
∑

j=1
rjr⊤j

)⊤

�̂
(

Ip −
m−1
∑

j=1
rjr⊤j

)

rm

=

(

Ip −
m−1
∑

j=1
rjr⊤j

)

�̂rm

= �̂rm −
m−1
∑

j=1
rj r⊤j �̂rm

⏟⏟⏟
=�jr⊤j rm=0

= �̂rm

(27)

which shows that rm is orthogonal to r1,… , rm−1 and an eigenvector of �̂. In addition,
since �1 ≥⋯ ≥ �m−1 are them−1 largest eigenvalues of �̂, it must hold that �m−1 ≥ �m.
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As a procedural way of calculating the PCA of a data matrix X ∈ ℝn×p, one has to
follow the following steps

1. Centre and standardize the columns of the data matrix X (the variables)
2. Calculate the empirical covariance matrix

�̂ = 1
n − 1

X⊤X (28)

3. Determine the eigenvalues �i for i = 1,… , p of �̂ and a set of p corresponding
orthonormal eigenvectors ri such that

�̂ri = �iri, ‖ri‖ = 1, i = 1,… , p and r⊤i rj = 0, i ≠ j (29)
as well as

�1 ≥ �2 ≥ ⋯ ≥ �p (30)
4. Set

R =
(

r1,… , rp
)

∈ ℝp×p and D = diag(�1,… , �p) (31)
so that

�̂ = RDR⊤ (32)
5. The vectors ri are the principal component directions, the projections r⊤i x are

called principal components and the corresponding eigenvalues �i are the varianceof the data in the direction of the principal component.
PCA can be used to reduce the dimension of the data. Since the principal components
account for less variance in every step, it is possible that there is little information in the
last principal components. An important result from linear algebra is that for a matrix
A ∈ ℝp×p with eigenvalues �1,… , �p it holds that

tr(A) =
p
∑

i=1
�i. (33)

The empirical covariance matrix has the variance of each variable on its diagonal and
therefore

tr
(

�̂
)

=
p
∑

i=1
s2(X⋅i) =

p
∑

i=1
�i, (34)

where X⋅i is the i-th column of the data matrix and s2 is the empirical variance. If the
variables are standardized then s2(X⋅i) = 1 for all i and therefore tr

(

�̂
)

= p. This
means in particular that the mean of the eigenvalues will be 16. A typical criterion for
considering a principal component as important is that the corresponding eigenvalue is
larger than the mean of all eigenvalues (in case of standardised data: larger than one). A

6∑p
i=1 �i∕p = 1
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tool for the analysis of the information behind the principal components is a scree plot.
In a scree plot, the eigenvalues (variances) are plotted as a function of the index of the
principal components. It is a way to quickly see how many principal components are of
interest.

4 Singular value decomposition (SVD)
The singular value decomposition (SVD) of a matrix X ∈ ℝn×p, n ≥ p, splits the data
matrix into a product of three matrices

X = UDV ⊤ (35)
where U ∈ ℝn×p has orthonormal columns, D ∈ ℝp×p is a diagonal matrix, and
V ∈ ℝp×p is an orthogonal matrix. Note that

U⊤U = Ip and V V ⊤ = V ⊤V = Ip (36)
Note that if n > p it cannot hold that UU⊤ = In 7. The matrix D is diagonal and
contains the singular values di. These are typically sorted such that di+1 ≤ di.
The orthogonality properties in Eq. (36) can now be used to derive the following equations

XX⊤U = UDV ⊤V DU⊤U = UD2

X⊤XV = V DU⊤UDV ⊤V = V D2 (37)

Since D is a diagonal matrix, this reduces the problem of determining U and V to
solving a series of eigenvalue problems

XX⊤ui = d2i ui and X⊤Xvi = d2i vi, i = 1,… , p (38)
Since n ≥ p, the matrix X⊤X ∈ ℝp×p is as large as or smaller than XX⊤ ∈ ℝn×n. It
is therefore more computationally effective to calculate V by solving the p eigenvalue
problems in Eq. (38) and then arrive at U by projecting the observations in X on the
space spanned by the columns of V and scaling them by the inverse of the singular
values, i.e.

U = XV D−1. (39)
Note that this approach requires that there are no singular values equal to zero (which is
allowed and possible in general).
For n < p the SVD can still be calculated. Note that the SVD can be calculated as above
for X⊤ ∈ ℝp×n. We get matrices V ∈ ℝp×n (orthonormal columns), a diagonal matrix
D ∈ ℝn×n, and U ∈ ℝn×n (orthogonal matrix) such that

X⊤ = V DU⊤. (40)
By transposing again we get

X = UDV ⊤. (41)
Note that this time U is square and V is rectangular.

7A set of maximally p vectors can be linearly independent in ℝp and the equation above would imply that
n > p vectors in ℝp are orthogonal and thus linearly independent.
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4.1 SVD and PCA
The SVD of a data matrixX ∈ ℝn×p is usually used to calculate the principal components
in the data. Assume that n ≥ p for now. Assume that the variables in X have been
centred and scaled. Note that the empirical covariance matrix of X is

�̂ = X⊤X
n − 1

. (42)

Using the SVD of X = UDV ⊤ this leads to

�̂ = 1
n − 1

V DU⊤UDV ⊤ = V
( 1
n − 1

D2
)

V ⊤. (43)
Comparing this with an orthogonal decomposition of a symmetric real matrix, we get
that the eigenvalues of �̂ are on the diagonal of the matrixD2∕(n− 1), and the columns
of V are the corresponding eigenvectors. This determines the principal components and
the corresponding variance explained by each component.
For n < p the calculations above work out the same, however, V is not a square matrix
any longer. The interpretation of eigenvalues and principal components still holds up
since

�̂V = V
( 1
n − 1

D2
)

(44)
but note that the eigenvalues �n+1,… , �p are zero.

4.2 SVD and dimension reduction
When using SVD for dimension reduction, we want to reduce the number of variables.
Therefore we want to find a subspace of ℝp of dimension q ≤ min(n, p) such that
the projections of the observations into this subspace are as similar to the original
observations in the Euclidean norm as possible, i.e. the objective is to find a subspace
̂ ⊂ ℝp, such that

̂ = argmin


n
∑

i=1
‖xi − Pxi‖22 (45)

where P is the orthogonal projection of ℝp onto the subspace  . Note that
n
∑

i=1
‖xi − Pxi‖22 =

n
∑

i=1

(

xi − Pxi
)⊤ (xi − Pxi

)

=
n
∑

i=1

[

x⊤i xi − 2x⊤i Pxi + x
⊤
i P

⊤
 Pxi

]

=
n
∑

i=1

[

x⊤i xi − x
⊤
i P

⊤
 Pxi

]

=
n
∑

i=1

[

‖xi‖22 − ‖Pxi‖22
]

(46)
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This shows that minimizing the squared distance between the observations and their
projections on the subspace is equivalent to maximizing the squared length of the
projected vectors8. Let’s start by looking for the best one-dimensional subspace 1.Every one-dimensional vector space is spanned by a vector r1 and we can assume that
‖r1‖2 = 1. The projection matrix onto a one-dimensional vector space is P = r1r⊤1 and
thus we are trying to maximize

n
∑

i=1
‖r1r⊤1 xi‖

2
2 =

n
∑

i=1
(r⊤1 xi)

2

= r⊤1

( n
∑

i=1
xix⊤i

)

r1

= (n − 1)r⊤1 �̂r1

(47)

The term we are maximizing is the Rayleigh quotient and therefore the optimal subspace
is spanned by r1, the eigenvector of �̂ with the largest corresponding eigenvalue. So
the optimal one-dimensional sub-space that is closest to the data is spanned by the first
principal component, which is also the first column of the matrix V in the SVD of X.
Similar arguments as for PCA lead to the conclusion that the best q-dimensional subspace
to approximate the data in is the space spanned by the first q principal component
directions, which are also the first q columns in the matrix V in the SVD of X. Note
that for n < p the data is maximally n dimensional and any approximating subspace
must therefore have dimension < n.

4.3 SVD and orthogonal components
Another interpretation of SVD is that it describes a method to describe the data as a
structure of orthogonal components. Let ui ∈ ℝn be the columns ofU and vi ∈ ℝmin(n,p)

the columns of V . Then

X = UDV ⊤ =
min(n,p)
∑

i=1
diuiv⊤i . (48)

Each matrix uiv⊤i is of rank 1 and these matrices are scaled by the singular values di. Aswe have seen above in Section 4.2, the optimal q ≤ min(n, p) subspace to approximate
X is spanned by the first q columns of V and the projection on that subspace is

Pq =
q
∑

i=1
viv⊤i . (49)

8Since∑n
i=1 ‖xi‖

2
2 is a constant given a dataset. The only object we can control is the subspace we project

into and therefore we can only change∑n
i=1 ‖Pxi‖

2
2.
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Projecting X on this optimal q-dimensional subspace using the projection in Eq. (49)
and the representation in Eq. (48) leads to

Xq = XPq =

(min(n,p)
∑

i=1
diuiv⊤i

)( q
∑

j=1
vjv⊤j

)

=
q
∑

i=1
diuiv⊤i . (50)

So projecting the data into this optimal q-dimensional subspace simply means to only
keep components 1 to q. The approximation error in Frobenius norm9 is

‖X −Xq‖
2
F =

‖

‖

‖

‖

‖

‖

min(n,p)
∑

i=q+1
diuiv⊤i

‖

‖

‖

‖

‖

‖

2

F

= tr
⎡

⎢

⎢

⎣

(min(n,p)
∑

i=q+1
diuiv⊤i

)⊤(min(n,p)
∑

j=q+1
djujv⊤j

)

⎤

⎥

⎥

⎦

= tr

[min(n,p)
∑

i,j=q+1
didjviu⊤i uiv

⊤
j

]

= tr

[min(n,p)
∑

i,j=q+1
didjviv⊤j

]

=
min(n,p)
∑

k=1

min(n,p)
∑

i,j=q+1
didjvikvjk

=
min(n,p)
∑

i,j=q+1
didj

min(n,p)
∑

k=1
vikvjk

=
min(n,p)
∑

i,j=q+1
didj 1(i = j) =

min(n,p)
∑

i=q+1
d2i

(51)

4.4 SVD and regression
In addition to dimension reduction and easy determination of the optimal q-dimensional
approximation to the data, SVD can also be a useful tool in regression.
Recall the linear regression problem with response vector y ∈ ℝn and design matrix
X ∈ ℝn×(p+1), where we adopt the convention that the first column of X is a vector of
1’s to encode the intercept. The variable y is modelled as

y = x⊤� + " (52)
where x ∈ ℝp+1 is a vector of predictors with x1 = 1 and � ∈ ℝp+1 are the regression
coefficients. The variable " is the error and typically one assumes that

" ∼ Normal(0, �2) (53)
9This is a matrix norm defined by ‖X‖

2
F =

∑n
i=1

∑n
j=1 x

2
ij
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for some (possibly unknown) variance �2. A solution to the regression model can be
found with least squares, i.e. solving

min
�∈ℝp+1

‖y −X�‖22 (54)

The solution to the least squares problem is given by
�̂ =

(

X⊤X
)−1X⊤y, (55)

which requires n ≥ p for the inversion to be possible. The SVD of X = UDV ⊤ can be
plugged into this equation to arrive at

�̂ =
(

V DU⊤UDV ⊤)−1 V DU⊤y

=
(

V D2V ⊤)−1 V DU⊤y

= V D−2V ⊤V DU⊤y
= V D−1U⊤y

(56)

The expression
X+ =

(

X⊤X
)−1X⊤ = V D−1U⊤ (57)

is called the Moore-Penrose pseudo-inverse of X. While it is therefore possible to
obtain a least squares solution through SVD, there are other simpler algorithms (e.g. QR
decomposition) which are preferable.
The fitted values for y are then

ŷ = X�̂ = UDV ⊤V D−1U⊤y = UU⊤y. (58)
Note that UU⊤ is an orthogonal projection matrix, projecting y onto the column space
of U .
For ridge regression the problem to be solved is

min
�∈ℝp

‖y −X�‖22 + �‖�‖
2
2 (59)

for some � ≥ 0. Assume that the response y and the columns of X are centred. The
solution is given by

�̂ =
(

X⊤X + �Ip
)−1X⊤y. (60)

Using the SVD of X = UDV ⊤ leads to

�̂ = V
(

D2 + �Ip
)−1DU⊤y =

p
∑

i=1

di
d2i + �

viu⊤i y. (61)

It can be seen that � can lead to stability in the calculation of the fractions di∕(d2i + �).If di is small, the fraction would become big if � = 0. Increasing lambda decreases
the magnitude of the fractions and increases numerical stability. Also, an increase in
� decreases the influence of each term in the same and therefore shrinks coefficients
towards 0.
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5 Factor Analysis (FA)
Factor Analysis (FA) is a simple model that helps in the exploratory data analysis of
measurements with many variables. The idea is that there are underlying unobserved
factors that can explain the other variables. Amajor driving force behind the development
of FA was to understand and make measurable abstract properties such as intelligence
in psychology.
The traditional model description of FA is a linear model

xi = � +Lzi + ei, i = 1,… , n, (62)
where

• xi ∈ ℝp is the observed data,
• � ∈ ℝp are the mean values of each variable,
• L ∈ ℝp×k is called the factor loading matrix describing how much each of the k

factors contributes to the description of the p variables,
• zi ∈ ℝk are the latent scores, describing the extent to which each p-dimensional

factor describes observation xi,• and ei are residual errors.
Note that the mean values and the factor loading matrix are constant across observations.
Denote Z = (z1… zn) and E = (e1… en). Typical assumptions are

• Z and E are independent,
• E[ei] = 0 for all i and Cov[E] = 	 ∈ ℝp×p is diagonal,
• and E[zi] = 0 for all i and Cov[Z] = Ik.

The first assumption ensures that all structural information is extracted and that E
represents the residual error, unexplained by the model. The second assumption, enforces
the interpretation of E as the residual error, especially by ensuring that the covariance is
diagonal. This means that any covariance information is supposed to be explained by
the factors. The third assumption is mostly for notational convenience. If the mean of
the latent scores were not zero, �0 say, then L�0 could be absorbed into �. Similarly for
the covariance matrix ofZ. If Cov(Z) = L0 then setting L̃ = LL−1∕2

0 would lead to an
equivalent model with unit covariance matrix (see also Murphy (2012, Section 12.1.1)).
Denoting X = (x1…xn), the assumptions above ensure that

E(xi) = � (63)
Cov(X) = Cov(LZ + E) = LL⊤ +	 (64)

where in the last equation we used the independence of Z and E as well as the as-
sumptions on the covariances. This shows that factor analysis provides a low-rank
parametrisation10 of the covariance of the variables in X. Instead of p2 parameters
only pk + p are needed. Depending on the relative sizes of p and k this can lead to a
substantial reduction in the number of necessary parameters.

10The rank of L and therefore LL⊤ is at most k, if k < p.
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Note that from a probabilistic perspective, the model and assumptions above are equiva-
lent to the hierarchical model

zi ∼ Normal(0, Ik)
xi|zi ∼ Normal(Lzi + �,	)

(65)

Computing the marginal distribution of xi reveals the low-rank covariance parametrisa-
tion above, i.e.

xi ∼ Normal(�,LL⊤ +	). (66)
As mentioned in the beginning, a major driving force in the advent of FA was to find
interpretable latent factors that can explain the observed variables. The posterior of
zi|xi is therefore of interest. Using Bayes rule together with the model in Eq. (65) we
can compute11

zi|xi ∼ Normal(mi,�) (67)
where � = (Ik + L⊤	−1L)−1 and mi = �L⊤	−1(xi − �). Note that a priori, neither
L, 	, nor � are known.

6 Probabilistic Principal Component Analysis (PPCA)
Probabilistic Principal Component Analysis (PPCA) is a variant of FA and is related
to standard PCA described above. Setting 	 = �2Ip and choosing k as the number of
principal components to retain, the model becomes very similar to PCA with added
homogeneous independent Gaussian noise. Note that the predictive distribution for the
latent factors can be written as

zi|xi ∼ Normal(M−1L⊤(xi − �), �2M−1) (68)
where M = �2Ik + L⊤L. It is easily seen that when � → 0 then the PPCA model
becomes the standard PCA model, since the covariance vanishes 12 and the mean
becomes (L⊤L)−1L⊤(xi −�) which is the orthogonal projection onto the column space
of L.
It can be shown that the maximum likelihood estimators of L and �2 recover the usual
interpretation of PCA, in the sense that if L ∈ ℝn×k then L will be estimated to a

11Using Bayes rule and calculating on the log-scale
log p(zi|xi) = log p(xi|zi) + log p(zi) + const

= logNormal(xi;Lzi + �,	) + logNormal(zi; 0, Ik) + const
= −ziL⊤	−1Lzi + 2(xi − �)⊤	−1Lzi − z⊤i zi + const
= −zi

(

Ik +L⊤	−1L
)

zi

+ 2
(

(

Ik +L⊤	−1L
)−1 L⊤	−1(xi − �)

)⊤
(

Ik +L⊤	−1L
)

zi + const
where the symmetry of 	 was used.

12i.e. the model becomes degenerate/singular
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slightly penalised version of the first k principal components and �2 is the average of
the remaining singular values.
There are multiple advantages to the probabilistic formulation of PCA. One advantage
of the probabilistic formulation of PCA is that it allows for data driven selection of
the number of latent components to retain. One possible solution for this is Automatic
Relevance Determination (ARD). Another advantage is that it is easier to adapt PCA
to other data types than continuous data as well as the incorporation of missing data
(Roweis, 1998; Tipping and Bishop, 1999).

7 Canonical Correlation Analysis (CCA)
The previous methods focused only on one dataset and projections into lower dimensions
that emphasize certain aspects (e.g. variance or correlations) of the data. When two
datasets are analysed jointly, one question that can be asked is how to project each dataset
into a lower-dimensional space such that the most similar directions in each dataset are
uncovered.
The traditional view/interpretation of CCA is as follows: Given two samples of (possibly
different) features, each sample vector of dimension p and q, respectively, find all pairs of
directions in the respective feature space (i.e. linear combinations of the feature vectors)
that are maximally correlated and orthogonal to all previous found pairs.
This can be formalised as follows. Assume that there are data matrices X ∈ ℝn×p

and Y ∈ ℝn×q . The task of CCA in its first step is to find a ∈ ℝp and b ∈ ℝq such
that the sample correlation between vectors Xa and Y b is maximal. Let �̂XY be the
cross-covariance matrix between X and Y , and �̂XX as well as �̂Y Y the respective
covariance matrices. A necessary assumption is that the covariance matrices of X and
Y are of full rank, i.e. are postive definite. The objective function is then

r(a, b) = sXa,Y b =
a⊤�̂XY b

(

a⊤�̂XXa
)1∕2 (

b⊤�̂Y Y b
)1∕2

. (69)

Note that r(a, b) is invariant under scaling of either argument and therefore we can
impose the restrictions

a⊤�̂XXa = 1 and b⊤�̂Y Y b = 1. (70)
Using the variable substitutions c ← �̂1∕2

XXa and d ← �̂1∕2
Y Y b the objective function is

transformed to
r(a, b) = c⊤�̂−1∕2

XX �̂XY �̂
−1∕2
Y Y d. (71)

Denote K = �̂−1∕2
XX �̂XY �̂

−1∕2
Y Y and the optimization problem to be solved, formulated as

a minimization problem, becomes
inf
c,d

−c⊤Kd such that c⊤c = 1, d⊤d = 1. (72)
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where a and b can be recovered by re-substitution. The Lagrangian for the corresponding
minimization problem is

L(c,d,�) = −c⊤Kd + �1(c⊤c − 1) + �2(d⊤d − 1). (73)
The dual function of the Lagrangian is

g(�) = inf
c,d

−c⊤Kd + �1(c⊤c − 1) + �2(d⊤d − 1) (74)
and can be rewritten as either

g(�) = inf
c,d

1
4�1

{

‖

‖

2�1c −Kd‖‖
2
2 + d

⊤ (−K⊤K + 4�1�2Iq
)

d
}

− �1 − �2, (75)
or
g(�) = inf

c,d
1
4�2

{

‖

‖

‖

2�2d −K⊤c‖‖
‖

2

2
+ c⊤

(

−KK⊤ + 4�1�2Ip
)

c
}

− �1 − �2. (76)
The reformulation in Eq. (75) shows directly that if �1 < 0 then the infimum is −∞
by choosing d = 0 and letting ‖c‖2 → ∞. An analogous result for �2 < 0 follows
from Eq. (76). It follows from Eq. (74) that the infimum is −∞ if �1 = 0 by choosing
c = �Kd and letting � → ∞ for any d such that Kd ≠ 0 (exists as long as K ≠ 0). An
analogous result follows for �2 = 0.
In the case �1 > 0 and �2 > 0, it is enough to focus on Eq. (75) if p > q or Eq. (76)
if q > p. Assume p > q here13. The arguments are similar to the analysis of the dual
function of the basic Rayleigh coefficient.
If the matrix (−K⊤K + 4�1�2Iq) is not psd there exists a negative eigenvalue � with
corresponding eigenvector u. Setting d = �u and c = 1

2�1
Kd leads to

‖

‖

2�1c −Kd‖‖
2
2+d

⊤ (−K⊤K + 4�1�2Iq
)

d = �2�‖u‖22 → −∞ for � → ∞. (77)
For the infimum to be greater than −∞ it is therefore necessary that (−K⊤K +4�1�2Iq)
is psd. Let the SVD of K be given by K = U�V ⊤ assuming that the singular values
�1 ≥ �2 ≥⋯ ≥ �q ≥ 0 in � are sorted from largest to smallest. Denote the columns of
V by vi and the columns of U by ui. Since p > q it holds that V V ⊤ = Iq which implies

d⊤
(

−K⊤K + 4�1�2Iq
)

d = d⊤V
(

−�2 + 4�1�2Iq
)

V ⊤d

=
q
∑

i=1
(4�1�2 − �2i )(v

⊤
i d)

2 (78)

for all d ∈ ℝq . The matrix (−K⊤K + 4�1�2Iq) is therefore psd if 4�1�2 ≥ �21 . Thenorm and quadratic terms in Eq. (75) are therefore greater or equal zero and both become
zero for c = 0 = d. The dual function is therefore

g(�) =

{

−�1 − �2 if 4�1�2 ≥ �21 , �1 > 0, �2 > 0,
−∞ otherwise (79)

13The arguments for q > p are symmetric using Eq. (76) instead.
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and implies the dual problem
sup
�

−�1 − �2 such that 4�1�2 ≥ �21 , �1 > 0, �2 > 0. (80)

It can be easily seen14 that the supremum is achieved for �̂1 = �1∕2 = �̂2 which leads toa dual objective function value of d∗ = −�1.
Let c1 = u1 and d1 = v1. Since the primal objective value p∗ in Eq. (72) is bounded
from below by d∗, it holds that

d∗ = −�1 ≤ p∗ ≤ −u⊤1Kv1 = −�1. (81)
This shows that p∗ = −�1 and that the optimisation problem in Eq. (72) is solved by
c1 and d1. By resubstitution it follows that a1 = �̂−1∕2

XX u1 and b1 = �̂−1∕2
Y Y v1 solve theoriginal optimisation problem of maximizing r(a1, b1) in Eq. (69).

By restricting the search space for c to vectors that are orthogonal to c1,… , ci−1 andfor d to vectors that are orthogonal to d1,… ,di−1 it follows easily—by the arguments
above—that the restriction in the dual problem becomes 4�1�2 ≥ �2i which ultimately
leads to the solution p∗ = −�i which is achieved for ci = ui and di = vi. By defining
�i = Xai and �i = Y bi, q pairs15 of canonical directions (�1,�1),… , (�q ,�q) can be
found such that

�̂(�,�)(�,�) =
(

Ip �
� Iq

)

. (82)

CCA can also be interpreted as a probabilistic model as shown by Bach and Jordan
(2006).

8 Independent Component Analysis (ICA)
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