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Bottom-up approach to clustering



Two approaches to combinatorial clustering

Top-down approach

▶ Start with all observations in one group and split them into clusters
▶ Examples: k-means and k-medoids

Bottom-up approach

▶ Start with all observations individually and join them together to build
clusters
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A bottom-up approach

Let 𝑔𝑖𝑙 be the set of samples in cluster 𝑙 at iteration 𝑖.

Hierarchical clustering

1. Initialization: Let each observation 𝐱𝑙 be in its own cluster 𝑔0𝑙 for 𝑙 = 1, … , 𝑛
2. Joining: In step 𝑖, join the two clusters 𝑔𝑖−1𝑙 and 𝑔𝑖−1𝑚 that are closest to each
other, resulting in 𝑛 − 𝑖 clusters

3. After 𝑛 − 1 steps all observations are in one big cluster

Questions

▶ How do we measure distance between clusters?
▶ How do we get a final clustering with a certain number of clusters?
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Linkage

Cluster-cluster distance is called linkage

Distance between clusters 𝑔 and ℎ
Let 𝐃 ∈ ℝ𝑛×𝑛 be a distance matrix between samples.

1. Average Linkage:
𝑑(𝑔, ℎ) = 1

|𝑔| ⋅ |ℎ| ∑
𝐱𝑙∈𝑔
𝐱𝑚∈ℎ

𝐃𝑙,𝑚

2. Single Linkage
𝑑(𝑔, ℎ) = min𝐱𝑙∈𝑔

𝐱𝑚∈ℎ
𝐃𝑙,𝑚

3. Complete Linkage
𝑑(𝑔, ℎ) = max𝐱𝑙∈𝑔

𝐱𝑚∈ℎ
𝐃𝑙,𝑚
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Dendrograms

Hierarchical clustering applied to iris dataset
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▶ Leaf colours represent iris type: setosa, versicolor and virginica
▶ Height is the distance between clusters
▶ The tree can be cut at a certain height to achieve a final clustering. Long branches
mean large increase in within cluster scatter at join
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Dendrograms for other linkages
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Notes on hierarchical clustering and linkage

Linkage criteria
▶ Average linkage is most commonly used and encourages average similarity
between all pairs in the two clusters.

▶ Single linkage tends to create clusters that are quite spread out since it only
considers the closest observations between clusters

▶ Complete linkage tends to produce ‘tight’ clusters

New view on clustering
▶ Clusters are joined by closeness to each other, not by closeness to some
centre

▶ e.g. single linkage hierarchical clustering can handle the circle around a disc
example from last lecture
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Model-based clustering



Model-based clustering

▶ All methods discussed so far were non-parametric clustering methods
based on
1. a distance/dissimilarity measure
2. a construction algorithm

▶ Performance depended on choices such as the metric and how to select the
cluster count

▶ Assuming an underlying theoretical model for the feature space worked well
in classification (LDA, QDA, logistic regression).

Is this transferable to clustering?
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Remember QDA

In Quadratic Discriminant Analysis (QDA) we assumed

𝑝(𝐱|𝑖) = 𝑁 (𝐱|𝝁𝑖, 𝚺𝑖) and 𝑝(𝑖) = 𝜋𝑖

This can be written as a Gaussian Mixture Model (GMM) for 𝐱 where

𝑝(𝐱) =
𝐾
∑
𝑖=1

𝑝(𝑖)𝑝(𝐱|𝑖) =
𝐾
∑
𝑖=1

𝜋𝑖𝑁 (𝐱|𝝁𝑖, 𝚺𝑖)

QDA used that the classes 𝑖𝑙 and feature vectors 𝐱𝑙 of the observations were
known to calculate 𝜋𝑖 , 𝝁𝑖 and 𝚺𝑖 .

What if we only know the features 𝐱𝑙?
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Maximum Likelihood for GMMs?

The log-likelihood for the data 𝐗 ∈ ℝ𝑛×𝑝 and all unknowns

𝜽 = (𝜋1, 𝝁1, 𝚺1, … , 𝜋𝐾 , 𝝁𝐾 , 𝚺𝐾)

is

log𝑝(𝐗|𝜽) =
𝑛
∑
𝑙=1

log(
𝐾
∑
𝑖=1

𝜋𝑖𝑁 (𝐱𝑙|𝝁𝑖, 𝚺𝑖))

Taking the gradient (with chain-rule) and solving for 𝝁𝑖 gives

𝝁𝑖 =
∑𝑛

𝑙=1 𝜂𝑙𝑖𝐱𝑙
∑𝑛

𝑙=1 𝜂𝑙𝑖
where 𝜂𝑙𝑖 =

𝜋𝑖𝑁(𝐱𝑙|𝝁𝑖, 𝚺𝑖)
∑𝐾

𝑗=1 𝜋𝑗𝑁(𝐱𝑙|𝝁𝑗, 𝚺𝑗)

Note: There is a non-linear cyclic dependence between 𝜂𝑙𝑖 and 𝝁𝑖 .
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Expectation-Maximization for GMMs

Finding the MLE for parameters 𝜽 in GMMs results in an iterative process called
Expectation-Maximization (EM)

1. Initialize 𝜽
2. E-Step: Update

𝜂𝑙𝑖 =
𝜋𝑖𝑁(𝐱𝑙|𝝁𝑖, 𝚺𝑖)

∑𝐾
𝑗=1 𝜋𝑗𝑁(𝐱𝑙|𝝁𝑗, 𝚺𝑗)

3. M-Step: Update

𝝁𝑖 =
∑𝑛

𝑙=1 𝜂𝑙𝑖𝐱𝑙
∑𝑛

𝑙=1 𝜂𝑙𝑖
𝜋𝑖 =

∑𝑛
𝑙=1 𝜂𝑙𝑖
𝑛

𝚺𝑖 =
1

∑𝑛
𝑙=1 𝜂𝑙𝑖

𝑛
∑
𝑙=1

𝜂𝑙𝑖(𝐱𝑙 − 𝝁𝑖)(𝐱𝑙 − 𝝁𝑖)𝑇

4. Repeat steps 2 and 3 until convergence 10/24



GMM clustering example

▶ Yellow and green clusters share a
covariance matrix

▶ The blue cluster has a different one
▶ GMM clustering on only the data
points without knowledge of the
class labels recovers the covariance
structures and clusters
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Why does Expectation-Maximization
work?



Likelihood of the complete data

▶ Assume that the classes 𝑖𝑙 are known and code them as 𝑧𝑙𝑗 = 1 if 𝑖𝑙 = 𝑗 and
𝑧𝑙𝑗 = 0 otherwise. Collect them in 𝐙 ∈ ℝ𝑛×𝐾 .

▶ (𝐗, 𝐙) are called the complete data, and incomplete data when only 𝐗 is
observed

▶ The class assignments 𝐙 are called latent variables
▶ Complete data likelihood

log𝑝(𝐗, 𝐙|𝜽) =
𝑛
∑
𝑙=1

𝐾
∑
𝑖=1

𝑧𝑙𝑖 (log(𝜋𝑖) + log(𝑁(𝐱𝑙|𝝁𝑖, 𝚺𝑖)))

and the parameters in 𝜽 are easy to estimate (QDA).
▶ Incomplete data likelihood

log𝑝(𝐗|𝜽) =
𝑛
∑
𝑙=1

log(
𝐾
∑
𝑖=1

𝜋𝑖𝑁 (𝐱𝑙|𝝁𝑖, 𝚺𝑖))
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Decomposing the incomplete data likelihood
▶ For known 𝐙

𝑝(𝐗|𝜽) = 𝑝(𝐗, 𝐙|𝜽)
𝑝(𝐙|𝐗, 𝜽) , i.e.

log𝑝(𝐗|𝜽) = log𝑝(𝐗, 𝐙|𝜽) − log𝑝(𝐙|𝐗, 𝜽)
is a decomposition of the log-likelihood for 𝐗 given 𝜽

▶ For any density 𝑞(𝐙) it holds that

log𝑝(𝐗|𝜽) = log 𝑝(𝐗, 𝐙|𝜽)𝑞(𝐙) − log 𝑝(𝐙|𝐗, 𝜽)𝑞(𝐙)
▶ Average over 𝐙 according to the density 𝑞(𝐙)

log(𝑝(𝐗|𝜽)) = 𝔼𝑞(𝐙) [log 𝑝(𝐗, 𝐙|𝜽)𝑞(𝐙) ] − 𝔼𝑞(𝐙) [log 𝑝(𝐙|𝐗, 𝜽)𝑞(𝐙) ]

=∶ 𝐹(𝑞, 𝜽) + KL(𝑞||𝑝(⋅|𝐗, 𝜽))
where KL(𝑞||𝑝(⋅|𝐗, 𝜽)) is called the Kullback-Leibler (KL) divergence of 𝑞(𝐙)
and 𝑝(⋅|𝐗, 𝜽). 13/24



Decomposing the incomplete data likelihood (II)

It can be shown (using Jensen’s inequality) that

KL(𝑞||𝑝(⋅|𝐗, 𝜽)) = −𝔼𝑞(𝐙) [log 𝑝(𝐙|𝐗, 𝜽)𝑞(𝐙) ] ≥ 0

with equality if 𝑞(𝐙) = 𝑝(𝐙|𝐗, 𝜽).

This implies that
log𝑝(𝐗|𝜽) ≥ 𝐹(𝑞, 𝜽)

is a lower bound which is tight (i.e. equality holds) if 𝑞(𝐙) = 𝑝(𝐙|𝐗, 𝜽).

This gives us a recipe on how to choose 𝑞(𝐙).
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Expectation-Maximization

1. Expectation step: For given parameters 𝜽(𝑚) the density 𝑞(𝐙) = 𝑝(𝐙|𝐗, 𝜽(𝑚))
ensures that 𝐹(𝑞, 𝜽(𝑚)) = log𝑝(𝐗|𝜽(𝑚)). Note that then

𝐹(𝑞, 𝜽) = 𝔼𝑝(𝐙|𝐗,𝜽(𝑚)) [log𝑝(𝐗, 𝐙|𝜽)] − 𝔼𝑝(𝐙|𝐗,𝜽(𝑚)) [log𝑝(𝐙|𝐗, 𝜽(𝑚))]
=∶ 𝑄(𝜽, 𝜽(𝑚)) + constant

2. Maximization step: Maximize 𝐹(𝑞, 𝜽) through

𝜽(𝑚+1) = arg max
𝜽

𝑄(𝜽, 𝜽(𝑚))

The incomplete data likelihood increases in each step until convergence to a
local maximum.
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How to use the EM algorithm?

Two step procedure

1. Compute for given 𝜽(𝑚)

𝑞(𝐙) = 𝑝(𝐙|𝐗, 𝜽(𝑚)).

2. Maximize in 𝜽
𝑄(𝜽, 𝜽(𝑚)) = 𝔼𝑝(𝐙|𝐗,𝜽(𝑚)) [log𝑝(𝐗, 𝐙|𝜽)]
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Applying EM to the GMM clustering problem (I)

Expectation step

Given 𝐗 and 𝜽(𝑚)

𝑝(𝐙|𝐗, 𝜽(𝑚)) = 𝑝(𝐗, 𝐙|𝜽(𝑚))
𝑝(𝐗|𝜽(𝑚)) =

𝑛
∏
𝑙=1

∏𝐾
𝑖=1(𝜋𝑖𝑁(𝐱𝑙|𝝁𝑖, 𝚺𝑖))𝑧𝑙𝑖

∑𝐾
𝑗=1 𝜋𝑗𝑁 (𝐱𝑙|𝝁𝑗, 𝚺𝑗)

and recall that

log𝑝(𝐗, 𝐙|𝜽) =
𝑛
∑
𝑙=1

𝐾
∑
𝑖=1

𝑧𝑙𝑖 (log(𝜋𝑖) + log(𝑁(𝐱𝑙|𝝁𝑖, 𝚺𝑖))) .

To compute 𝑄(𝜽, 𝜽(𝑚)) we only need to compute

𝔼𝑝(𝐙|𝐗,𝜽(𝑚))[𝑧𝑙𝑖] =
𝜋𝑖𝑁(𝐱𝑙|𝝁𝑖, 𝚺𝑖)

∑𝐾
𝑗=1 𝜋𝑗𝑁(𝐱𝑙|𝝁𝑗, 𝚺𝑗)

= 𝜂𝑙𝑖

the so-called responsibility of class 𝑖 for having generated the observation 𝐱𝑙. 17/24



Applying EM to the GMM clustering problem (II)

Maximization step

This results in

𝑄(𝜽, 𝜽(𝑚)) =
𝑛
∑
𝑙=1

𝐾
∑
𝑖=1

𝜂𝑙𝑖 (log(𝜋𝑖) + log(𝑁(𝐱𝑙|𝝁𝑖, 𝚺𝑖)))

which is maximized by the MLE estimates

𝝁𝑖 =
∑𝑛

𝑙=1 𝜂𝑙𝑖𝐱𝑙
∑𝑛

𝑙=1 𝜂𝑙𝑖
𝜋𝑖 =

∑𝑛
𝑙=1 𝜂𝑙𝑖
𝑛

𝚺𝑖 =
1

∑𝑛
𝑙=1 𝜂𝑙𝑖

𝑛
∑
𝑙=1

𝜂𝑙𝑖(𝐱𝑙 − 𝝁𝑖)(𝐱𝑙 − 𝝁𝑖)𝑇
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Cluster selection

A final clustering can be selected with
𝐶(𝐱𝑙) = arg max

𝑖
𝜂𝑙𝑖

or responsibilities can be used as a soft clustering

Cluster count selection

Model selection criteria for MLE can be used, e.g. minimal Bayesian Information
Criterion (BIC)

BIC(𝐾) = − 2 log(𝑝(𝐗|𝜽, 𝐾))

+ log(𝑛) ⋅ [(𝐾 − 1) + 𝐾 ⋅ 𝑝 + 𝐾 ⋅ 𝑝(𝑝 + 1)
2 ]⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟

number of model parameters

which is valid for large 𝑛. 19/24



Caveat with MLE for GMMs

▶ Centering one mixture component on an observation (i.e. 𝝁𝑖 = 𝐱𝑙 for some 𝑖
and 𝑙) and letting its variance go to zero can drive the likelihood to infinity

▶ ‘Outside of scope’-solution:
Bayesian framework and Inverse-Wishart prior on 𝚺𝑖

▶ Initialize 𝚺𝑖 with large enough variances and potentially restart if bad
convergence

▶ Like k-means, this algorithm is sensitive to starting values
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GMMs and EM for classification



GMM for classification

In QDA 𝑝(𝐱|𝑖) = 𝑁(𝐱|𝝁𝑖, 𝚺𝑖) capture classes with elliptic shape.

Assume features are described by a GMM, i.e.

𝑝(𝐱|𝑖) =
𝑀𝑖

∑
𝑚=1

𝜋𝑖𝑚𝑁(𝐱|𝝁𝑖𝑚, 𝚺)

where
▶ 𝑀𝑖 components for class 𝑖
▶ 𝜋𝑖𝑚 is the probability of mixture component 𝑚 for class 𝑖
▶ Covariance matrix 𝚺 is assumed to be constant across mixture components
and classes

Component membership 𝑧𝑙𝑚 is a latent variable for the observation (𝐱𝑙, 𝑖𝑙) with
𝑧𝑙𝑚 = 1 if 𝐱𝑙 is in component 𝑚 ∈ {1, … ,𝑀𝑖𝑙} and 𝑧𝑙𝑚 = 0 otherwise
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Mixture DA

Finding the MLE for the mixture DA parameters can be achieved through
Expectation-Maximization (EM)

1. Initialize 𝜽
2. E-Step: Update

𝜂𝑙𝑚 =
𝜋𝑖𝑙𝑚𝑁(𝐱𝑙|𝝁𝑖𝑙𝑚, 𝚺)

∑
𝑀𝑖𝑙
𝑗=1 𝜋𝑖𝑙𝑗𝑁(𝐱𝑙|𝝁𝑖𝑙𝑗, 𝚺)

3. M-Step: Update

𝝁𝑖𝑚 =
∑𝑖𝑙=𝑖

𝜂𝑙𝑚𝐱𝑙
∑𝑖𝑙=𝑖

𝜂𝑙𝑚
𝜋𝑖𝑚 =

∑𝑖𝑙=𝑖
𝜂𝑙𝑚

𝑛𝑖

𝚺 = 1
𝑛

𝐾
∑
𝑖=1

∑
𝑖𝑙=𝑖

𝑀𝑖

∑
𝑚=1

𝜂𝑙𝑚(𝐱𝑙 − 𝝁𝑖𝑚)(𝐱𝑙 − 𝝁𝑖𝑚)𝑇

4. Repeat steps 2 and 3 until convergence 22/24



MDA example
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Take-home message

▶ Hierarchical clustering and its linkage-methods allow for a different
non-parametric approach with visual output (dendrogram)

▶ Expectation-Maximization allows us to perform model-based clustering
▶ Both clustering and classification methods profit from using Gaussian
Mixture Models
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