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Bottom-up approach to clustering



Two approaches to combinatorial clustering

Top-down approach

» Start with all observations in one group and split them into clusters

» Examples: k-means and k-medoids
Bottom-up approach

» Start with all observations individually and join them together to build
clusters
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A bottom-up approach

Let g! be the set of samples in cluster [ at iteration i.
Hierarchical clustering

1. Initialization: Let each observation x; be in its own cluster g for[ = 1,...,n

2. Joining: In step i, join the two clusters gi=! and gi;! that are closest to each
other, resulting in n — i clusters

3. After n — 1 steps all observations are in one big cluster

Questions

» How do we measure distance between clusters?
» How do we get a final clustering with a certain number of clusters?
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Linkage

Cluster-cluster distance is called linkage

Distance between clusters g and i
Let D € R™" be a distance matrix between samples.

1. Average Linkage:

1
d(g,h) = —— D
@1 = G 22, D

Xm€Eh
2. Single Linkage
d(g, h) = min Dy,
Xm€Eh
3. Complete Linkage
d(g,h) = 1)22? D;
Xm€Eh 3/24



Dendrograms

Hierarchical clustering applied to iris dataset
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» Leaf colours represent iris type: , and virginica

» Height is the distance between clusters

» The tree can be cut at a certain height to achieve a final clustering. Long branches

mean large increase in within cluster scatter at join W/2%



Dendrograms for other linkages
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Notes on hierarchical clustering and linkage

Linkage criteria

» Average linkage is most commonly used and encourages average similarity
between all pairs in the two clusters.

» Single linkage tends to create clusters that are quite spread out since it only
considers the closest observations between clusters

» Complete linkage tends to produce ‘tight’ clusters

New view on clustering

» Clusters are joined by closeness to each other, not by closeness to some
centre

» e.g. single linkage hierarchical clustering can handle the circle around a disc
example from last lecture
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Model-based clustering



Model-based clustering

» All methods discussed so far were non-parametric clustering methods
based on

1. a distance/dissimilarity measure
2. a construction algorithm

» Performance depended on choices such as the metric and how to select the
cluster count

» Assuming an underlying theoretical model for the feature space worked well
in classification (LDA, QDA, logistic regression).

Is this transferable to clustering?
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Remember QDA

In Quadratic Discriminant Analysis (QDA) we assumed
p(x|i) = N (x|u;, %;) and p() =
This can be written as a Gaussian Mixture Model (GMM) for x where
K K
p(x) =Y p)p(x|i) = 3 mN (x|u;, ;)
i=1 i=1

QDA used that the classes i; and feature vectors x; of the observations were
known to calculate 7;, u; and ;.

What if we only know the features x;?
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Maximum Likelihood for GMMs?

The log-likelihood for the data X € R™P and all unknowns

0 = (my, p1, 2y, -, g5 M5 Zc)

n K
log p(X|6) = ) log (Z 7N (x|, zi))
=i =l
Taking the gradient (with chain-rule) and solving for u; gives

n
L NpX ‘N 3.
= —217117711 L where 7 = 1?1 (il Z4)
=1 i 2= TGNy, Z))

i

Note: There is a non-linear cyclic dependence between 7; and y;.
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Expectation-Maximization for GMMs

Finding the MLE for parameters 6 in GMMs results in an iterative process called
Expectation-Maximization (EM)

1. Initialize 6
2. E-Step: Update
TN |pi, Z;)

K
2o NG|k, )

mi =

3. M-Step: Update
_ 27:1 X = 27:1 Nii
===l =
z:l:l Nl h
1 n
Zln=1 Mi 1=1
4. Repeat steps 2 and 3 until convergence 10/24
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GMM clustering example

» Yellow and green clusters share a
covariance matrix

» The blue cluster has a different one

» GMM clustering on only the data
points without knowledge of the
class labels recovers the covariance
structures and clusters
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Why does Expectation-Maximization
work?




Likelihood of the complete data

> Assume that the classes i; are known and code them as z;; =1ifi; = jand
z;; = 0 otherwise. Collect them in Z € R™X,

» (X,Z) are called the complete data, and incomplete data when only X is
observed

» The class assignments Z are called latent variables

» Complete data likelihood

n K

log p(X,Z|6) = Y >, z;; (log(7;) + log(N (x|t;, Z:)))
I=1i=1

and the parameters in @ are easy to estimate (QDA).
» Incomplete data likelihood

n K
log p(X|6) = ) log (Z N (%) |ps, Zi))
1=1 i=1
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Decomposing the incomplete data likelihood

» For known Z
p(X,Z|6)

p(X[6) = W’
log p(X|6) = log p(X, Z|0) — log p(Z|X, 6)
is a decomposition of the log-likelihood for X given 6
» For any density q(Z) it holds that

i.e.

p(X,Z|6) p(Z|X, 6)
lo X|0) = log —————~= —log ———~
g p(X|0) g @ g 1@
» Average over Z according to the density q(Z)

2|6 .9
log(p(X|6)) = [Eq(Z) [log p()q((zz)| )] — [Eq(z) [IOg p(s(l)z() )

=: F(q,0) + KL(q||p(-|X, ©))

where KL(q||p(-|X, ©)) is called the Kullback-Leibler (KL) divergence of g(Z)

and p(-|X, 6). 13/24



Decomposing the incomplete data likelihood (11)

It can be shown (using Jensen’s inequality) that

p(ZX, 9)] >

KL(llp(1X, 0) = ~Eq(z)log 22
with equality if ¢(Z) = p(Z|X, 6).

This implies that
log p(X[6) > F(q,6)

is a lower bound which is tight (i.e. equality holds) if g(Z) = p(Z|X, 6).

This gives us a recipe on how to choose g(Z).
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Expectation-Maximization

1. Expectation step: For given parameters 6™ the density q(Z) = p(Z|X, 6™)
ensures that F(g, 8/™) = log p(X|6“™). Note that then

F(q,0) = [Ep(Z|X,6(m)) [log p(X,Z|6)] - [Ep(z|x,e(m)) [log p(Z[X, e(m))]
=: Q(6,6(™) + constant

2. Maximization step: Maximize F(q, ) through

e(m+1) = argmax Q(ea e(m))
6

The incomplete data likelihood increases in each step until convergence to a
local maximum.

15/24



How to use the EM algorithm?

Two step procedure

1. Compute for given 6(™)
q(2) = p(Z|X, 6"™).

2. Maximize in 6
Q(6,6™) = E pzx atmyy [log p(X, Z|6)]
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Applying EM to the GMM clustering problem (1)

Expectation step
Given X and 6™

K .
p(X,Z|6™) ﬁ 1o (TN (x|, Z))%0

p(ZIX, 6) = - L=

and recall that
n K
log p(X, Z|6) = 3 > zi; (log(7;) + log(N (xy|p;, £)))) .
I=1i=1
To compute Q(6,6") we only need to compute
TNXg|p, Z;)
= =

the so-called responsibility of class i for having generated the observation x;.  17/24

[Ep(z\x,e(M)) [z;] =



Applying EM to the GMM clustering problem (II)

Maximization step
This results in
n K
Q(6,6™) = 7> my; (log(r;) + log(N (%) |;, %))
I=1i=1

which is maximized by the MLE estimates

n n
2o X S 21 M
- n i — —

21:1 i h
1 n

= on
Zl=1 i 1=1

i

% (% — p)(xp — )T
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Cluster selection

A final clustering can be selected with

C(x;) = arg maxny;
i
or responsibilities can be used as a soft clustering

Cluster count selection
Model selection criteria for MLE can be used, e.g. minimal Bayesian Information
Criterion (BIC)

BIC(K) = — 21og(p(X|6,K))

p(p+1)
K=

number of model parameters

+log(n) - [(K—1)+K-p+

which is valid for large n. 19/24



Caveat with MLE for GMMs

» Centering one mixture component on an observation (i.e. u; = x; for some i
and I) and letting its variance go to zero can drive the likelihood to infinity
» ‘Outside of scope’-solution:
Bayesian framework and Inverse-Wishart prior on %;
» Initialize Z; with large enough variances and potentially restart if bad
convergence

» Like k-means, this algorithm is sensitive to starting values
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GMMs and EM for classification




GMM for classification

In QDA p(x|i) = N(x|u;, Z;) capture classes with elliptic shape.

Assume features are described by a GMM, i.e.
M;
p&x|i) = D) TN X|tym, Z)

m=1

where

» M; components for class i

» 7, is the probability of mixture component m for class i

» Covariance matrix X is assumed to be constant across mixture components
and classes

Component membership z,;,, is a latent variable for the observation (x;,i;) with
Zim = 1if x; is in component m € {1,..., M; } and z;,,, = 0 otherwise
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Mixture DA

Finding the MLE for the mixture DA parameters can be achieved through
Expectation-Maximization (EM)

1. Initialize 8
2. E-Step: Update
ﬂilmN(XlLuilm: Z)

nlm = Mi
2 j=1 i N (x|, Z)
3. M-Step: Update
Zil:i NimXi Zi;:i Nim
MRim = ——— Ty = —
im Zil:i Nim im n;
1 X M;
2= 202 2 Mm@ = Rim)(X1 = Bim)”
i=lij=im=1

4. Repeat steps 2 and 3 until convergence 22/24



MDA example

LDA Decision Boundaries QDA Decision Boundaries MDA Decision Boundaries
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Take-home message

» Hierarchical clustering and its linkage-methods allow for a different
non-parametric approach with visual output (dendrogram)

» Expectation-Maximization allows us to perform model-based clustering

» Both clustering and classification methods profit from using Gaussian
Mixture Models
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