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Regularisation in classification



Recall: Regularised Discriminant Analysis (RDA)

Given training samples (i, x;), quadratic DA models

p(x]i) = N(x|p;, %;) and  p(i) = 7

Estimates fi;, ; and 7; are straight-forward to find,...

...but evaluating the normal density requires inversion of ;. If it is
(near-)singular, this can lead to numerical instability.

Regularisation can help here:

> Use §; = 2P 4 ASLDA for 1> 0
» Use LDA (i.e. I; = =) and £ = SPA 4+ JA for 1 > 0 and a diagonal matrix A
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Recall: Naive Bayes LDA

Naive Bayes LDA means that we assume that £ = A for a diagonal matrix A. The
diagonal elements are estimated as
AU = — Z Z(ng) _ﬁgj))z

i=1i=i

which is the pooled within-class variance.

Classification is performed by predicting the class with the maximal discriminant
function value .
5i(x) = _E(X — ) A (x — @) + log(7)

_ _% Ha_uz(x _ﬁi)Hj + log(7;)

where (3—1/2)(i’i) =1/VAGD,
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Shrunken centroids (1)

In high-dimensional problems (p > n), centroids will

» contain noise
» be hard to interpret when all variables are active
As in regression, we would like to perform variable selection and reduce noise.

Recall: The class centroids solve

- Z X; = argmln Z 1%, — Vi3

lill lll

Idea: Can we perform variable selection through ¢,-/lasso-style regularisation?
How can we account for varying variance in features and stabilise against noise?
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Shrunken centroids (11)

Nearest shrunken centroids performs variable selection and stabilises centroid

estimates by solving

= o 1 AN — ~
K = argmin 5 37 |+ 501,) ™2 = VI + Angml|v = fr |l

v il=l

where s, = median(A0-D, .., APP)), m; = | /% — % and iy = %lez-

» Penalises distance of class centroid to the overall centroid ur

» A+ soI, is the diagonal regularised within-class covariance matrix. Features
that are highly variable across samples are scaled down (interpretability)

» n;m; scales 4 in case of unequal class sizes
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Shrunken centroids (111)

The solution for component j can be derived as
i

=) _ () AU ) )
= +m;(AY)) +5,) ST (t;/,A) where t// = A .

i

Note: 1 is a tuning parameter and has to be determined through e.g.
cross-validation.

» Typically, misclassification rate improves first with increasing 1 and declines
for too high values

» The larger 1 the more components will be equal to the respective
component of the overall centroid.
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Application of nearest shrunken centroids (1)

A gene expression data set with n = 63 and p = 2308. There are four classes
(cancer subtypes) with ng;, = 8, npws = 23, nng = 12, and ngyg = 20.
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5-fold cross-validation curve and largest A that leads to minimal misclassification rate
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Application of nearest shrunken centroids (II)
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Grey lines show the original centroids and red lines show the shrunken centroids -



Extensions of the lasso




The lasso and groups of highly correlated variables

» The lasso does not handle groups of highly correlated variables well.
» Example: Two groups of highly correlated variables, e.g.

0

>
X ~N(0,%) where ==(""1
0 I

) c RZOOXZOO

where
3, € ROX100 50D — 704 and 30D =1, i
The response is generated for n = 100 samples as
Yy=X; — X2 t+€ where &~ N(O, 4Ip).

» Expectation: Since the predictors in each group are strongly correlated, all
could be considered equally as predictors.

» Possible caveat: The lasso makes a sparsity assumption and tries to set as
many coefficients to zero as possible.
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The lasso and groups of highly correlated variables in practice

Lasso Elastic net (a =0.2)

Coefficient

log(A)
» At optimal A the lasso selects 5 non-zero coefficients 0 of which were in the
true coefficient vector.
» Very precise but ‘wrong’ estimates.
» An alternative algorithm, the elastic net estimates 19 non-zero coefficients.
(11 in the 1%t group and 8 in the 2" group, group-wise close coefficients)
» ‘Shares’ responsibility among correlated variables
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The elastic net (1)

The elastic net solves the problem

216113 + allgl

1
arg min §||y — Xﬁ||% + /1(
B

striking a balance between lasso (variable selection) and ridge regression
(grouping of variables)

Lasso Elastic net (a =0.7)
B2 B2
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Notes on the elastic net (l1)

» The solution can be found through cyclic coordinate descent

» « is an additional tuning parameter that should be determined by
cross-validation

» The lasso and ridge regression are special cases of the elastic net (e« = 1 and
a = 0, respectively).
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Explicitly adding groups to the lasso

» The lasso in it's original formulation considers each variable separately
» Groups in data can form through e.g.

» Correlation

» Categorical variables in dummy encoding

» Domain-knowledge (e.g. genes in the same signal pathway, signals that only
appear in groups in a compressed sensing problem,...)

» Ideally the whole group is either present or not

» The elastic net can find groups, but only does so for highly correlated
variables and without external influence. Sometimes more control is
necessary.
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The group lasso (1)

The group lasso solves the problem
K

.1
argmin |y — Xg|[3 + 1 >, IBkll2
ﬁ k=1

where By is a vector of coefficients §; for the k-th group. Note that |5, = |5l
for singleton groups.

Lasso Group lasso ({By, Bs}, {B2})
Ba Ba
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Comparison: Lasso, elastic net and group lasso

Lasso Elastic net (a = 0.7) Group lasso ({B, Bs}, {B2})

1 P2 i

» The lasso sets variables exactly to zero either on a corner or along an edge.

» The elastic net similarly sets variables exactly to zero on a corner or along an edge.
The curved edges encourage remaining coefficients to be closer together.

» The group lasso has actual information about groups of variables. It encourages
whole groups to be zero or non-zero with similar coefficients.
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Penalisation in GLMs

Penalisation can also be used in generalised linear models (GLMs), e.g. to
perform sparse logistic regression.

Given p(y|B, x) the log-likelihood of the model is

n
L(Bly,X) = D log(p(i|B, x1))

=1
Instead of penalising the minimisation of the residual sum of squares (RSS), the
minimisation of the negative log-likelihood is penalized, i.e.

argénin —L(Bly, X) + A|Bll1

Note: If p(y|B,x) is Gaussian and the linear model y = Xg + ¢ is assumed, this is
equivalent to the lasso.
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Sparse logistic regression

Recall: For logistic regression with i; € {0,1} it holds that

_ exp(x'p)
p(1B,x) = 1T oxpxf)

and the penalised minimisation problem becomes

1

and p(0|B,x) = oo B

arg;"ﬂin =2, (ix{ B—log (1 + exp(x"B))) + AllBllx
I=1

» The minimisation problem is still convex, but non-linear in B. Iterative
quadratic approximations combined with coordinate descent can be used to
solve this problem.

» Another way to perform sparse classification (like e.g. nearest shrunken
centroids)
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Sparse multi-class logistic regression

In multi-class logistic regression with i; € {1,..., K}, there is a matrix of
coefficients B € RPXX-1 and it holds fori = 1,...,K — 1 that

exp(x'4;) 1

p(i|B,x) = = and p(K|B,x) = —
1+ ijl exp(xT ;) 1+ ijl exp(xXT ;)

» As in two-class case, the absolute value of each entry in B can be penalised.

» Another possibility is to use the group lasso on all coefficients for one
variable, i.e. penalise with ||B;.||, for j =1,..., p.
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Example for sparse multi-class logistic regression

MNIST-derived zip code digits (n = 7291, p = 256)
Sparse multi-class logistic regression was applied to the whole data set and the

penalisation parameter was selected by 10-fold CV.
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Orange tiles show positive coefficients and blue tiles show negative coefficients. Class

averages are shown in the background.



Take-home message

» Penalisation methods are not only restricted to regression, also applicable
to classification

» Sparsity is a very important concept when interpretability of models is
important

» Many extensions to the lasso exist, which make it more suitable for a variety
of different situations
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