
Lecture 11: Data representations - Linear methods

Felix Held, Mathematical Sciences

MSA220/MVE440 Statistical Learning for Big Data

7th May 2020

Goals of data representation

Dimension reduction while retaining important aspects of the data

Goals can be

▶ Visualisation
▶ Interpretability/Variable selection
▶ Data compression
▶ Finding a representation of the data that is more suitable to the posed
question

Let us start with linear dimension reduction.

1/21

Re-cap: SVD

The singular value decomposition (SVD) of a matrix 𝐗 ∈ ℝ𝑛×𝑝, 𝑛 ≥ 𝑝, is

𝐗 = 𝐔𝐃𝐕⊤

where 𝐔 ∈ ℝ𝑛×𝑝 and 𝐕 ∈ ℝ𝑝×𝑝 with

𝐔⊤𝐔 = 𝐈𝑝 and 𝐕⊤𝐕 = 𝐕𝐕⊤ = 𝐈𝑝

and 𝐃 ∈ ℝ𝑝×𝑝 is diagonal.

Usually the diagonal elements of 𝐃 are sorted such that

𝑑11 ≥ 𝑑22 ≥ … ≥ 𝑑𝑝𝑝.

2/21

SVD and best rank-𝑞-approximation (I)

Write 𝐮𝑗 and 𝐯𝑗 for the columns of 𝐔 and 𝐕, respectively. Then

𝐗 = 𝐔𝐃𝐕⊤ =
𝑝
∑
𝑗=1

𝑑𝑗𝑗 𝐮𝑗𝐯⊤𝑗⏟
rank-1-matrix

Best rank-𝑞-approximation: For 𝑞 < 𝑝

𝐗𝑞 =
𝑞
∑
𝑗=1

𝑑𝑗𝑗𝐮𝑗𝐯⊤𝑗

approximates 𝐗 as a sum of layers with approximation error

‖
‖𝐗 − 𝐗𝑞

‖
‖
2

𝐹
=
‖
‖‖‖

𝑝
∑

𝑗=𝑞+1
𝑑𝑗𝑗𝐮𝑗𝐯⊤𝑗

‖
‖‖‖

2

𝐹

=
𝑝
∑

𝑗=𝑞+1
𝑑2𝑗𝑗

3/21

Alternative view of best rank-𝑞-approximation

Using only the first 𝑞 < min(𝑝, 𝑛) columns of 𝐕 and 𝐔, and the first q rows and
columns of 𝐃, leads to

𝐗𝑞 = 𝐔𝑞𝐃𝑞𝐕⊤
𝑞 .

According to the Eckart-Young-Mirsky theorem, the matrix 𝐗𝑞 is a solution to the
following minimization problem (see website for proof)

arg min
rank(𝐌)=𝑞

‖𝐗 −𝐌‖2𝐹 .

The solution is unique if the 𝑞 + 1-th singular value is different from the the 𝑞-th
singular value.

4/21

Alternative view of the Eckart-Young-Mirsky problem

For 𝑞 < min(𝑝, 𝑛), set 𝐋 ∶= 𝐔𝑞𝐃𝑞 ∈ ℝ𝑛×𝑞 and 𝐅 = 𝐕⊤
𝑞 ∈ ℝ𝑞×𝑝.

Then 𝐗𝑞 = 𝐋𝐅 is a solution of

arg min
𝐋∈ℝ𝑛×𝑞,𝐅∈ℝ𝑞×𝑝

‖𝐗 − 𝐋𝐅‖2𝐹

Notes:
▶ Whereas 𝐗𝑞 can be the unique minimizer for the original minimisation
problem, the matrices 𝐅 and 𝐋 are not unique.

▶ This is just PCA: When using SVD to compute the PCA of 𝐗, then the columns
of 𝐕 contain the PC directions and the rows of 𝐅 the first 𝑞 of them.
Projecting the data onto the PCs but then reconstructing it means to
compute (𝐗𝐕𝑞)𝐕⊤

𝑞 = (𝐔𝐃𝐕⊤𝐕𝑞)𝐕⊤
𝑞 = (𝐔𝐃𝐈𝑝×𝑞)𝐕⊤

𝑞 = (𝐔𝑞𝐃𝑞)𝐕⊤
𝑞 = 𝐋𝐅.

5/21

Low-rank matrix factorisation

Let 𝑞 < min(𝑝, 𝑛)
arg min

𝐋∈ℝ𝑛×𝑞,𝐅∈ℝ𝑞×𝑝
‖𝐗 − 𝐋𝐅‖2𝐹

Interpretation

▶ The rows of 𝐅 can be seen as basis vectors or coordinates of a subspace in
feature space

▶ The rows of 𝐋 provide coefficients that combine the basis vectors in 𝐅 to the
closest 𝑞-dimensional approximation of the respective observation

▶ In the framework of factor analysis the rows of 𝐅 are called factors and the
rows of 𝐋 are called (latent) loadings

6/21

Notes on factor analysis

▶ Originated in psychometrics with the idea that factors could describe
unobservable (latent) properties (e.g. intelligence)

▶ A typical assumption is that the rows of 𝐅 are orthogonal, i.e. 𝐅𝐅⊤ = 𝐈𝑞
▶ But even row orthogonality of 𝐅 does not ensure identifiability (uniqueness
of the solution) since for a orthogonal matrix 𝐑 ∈ ℝ𝑞×𝑞

𝐋′𝐅′ ∶= (𝐋𝐑)(𝐑⊤𝐅) = 𝐋𝐅

and 𝐅′ is orthogonal if 𝐅 is
▶ Every orthogonal matrix describes a rotation and when applied to factors
and loadings it is called a factor rotation

▶ Through optimization of 𝐑, we can make either factors (varimax rotation) or
loadings (quartimax rotation) sparse

7/21

Conclusions from Factor Analysis/SVD-based approach

▶ The SVD-based approach is provably best in the Frobenius norm
▶ Best 𝑞 can be easily chosen by observing the approximation error

However:

▶ Interpretation is difficult since layers both add and subtract information

(𝑑𝑖𝑖𝐮𝑖𝐯⊤𝑖)(𝑟,𝑠) = 𝑑𝑖𝑖𝐮(𝑟)𝑖 𝐯(𝑠)𝑖

▶ 𝐔 and 𝐕, respectively 𝐋 and 𝐅, are not unique and usually dense (no zero
entries)

8/21

Non-negative Matrix Factorization (NMF)

Idea: We can add constraints to the low-rank matrix factorisation problem.

Non-negative matrix factorisation (NMF): Let 𝑞 < min(𝑝, 𝑛)

arg min
𝐋∈ℝ𝑛×𝑞,𝐅∈ℝ𝑞×𝑝

‖𝐗 − 𝐋𝐅‖2𝐹 such that 𝐋 ≥ 0, 𝐅 ≥ 0

▶ Sum of positive layers: 𝐗 ≈
𝑞
∑
𝑗=1

𝐋(∶,𝑗)𝐅(𝑗,∶)

▶ No fast specialised algorithm or analytic solution exists (NP-hard problem)
▶ Requires that the data 𝐗 has to be non-negative
▶ 𝐋 and 𝐅 are again not uniquely identifiable.
▶ Choice of 𝑞 not as straight-forward as for SVD

9/21

SVD vs NMF – Example: Reconstruction

MNIST-derived zip code digits (𝑛 = 1000, 𝑝 = 256)
100 samples are drawn randomly from each class to keep the problem balanced.

NMF 1 NMF 2 NMF 3 NMF 4 NMF 5

PCA 1 PCA 2 PCA 3 PCA 4 PCA 5

Red-ish colours are for negative values, white is around zero and dark stands for
positive values. Reconstructions are done using 50 first PCs / 𝑞 = 50. 10/21

SVD vs NMF – Example: Basis Components

Large difference between principal
components (columns of 𝐕) and
NMF basis components (rows of 𝐅)

The non-negativity constraint
leads to sparsity in the basis (in 𝐅)
and coefficients (in 𝐋, next slide).

Therefore, NMF captures sparse
characteristic parts while PCA
components capture more global
features.

NMF 6 NMF 7 NMF 8 NMF 9 NMF 10

NMF 1 NMF 2 NMF 3 NMF 4 NMF 5

PCA 6 PCA 7 PCA 8 PCA 9 PCA 10

PCA 1 PCA 2 PCA 3 PCA 4 PCA 5

11/21

SVD vs NMF – Example: Coefficients ()
SVD coefficients

NMF coefficients

Note the additional sparsity in the NMF coefficients. 12/21

How to solve the NMF problem?

The NMF problem is

arg min
𝐋∈ℝ𝑛×𝑞,𝐅∈ℝ𝑞×𝑝

‖𝐗 − 𝐋𝐅‖2𝐹 such that 𝐋 ≥ 0, 𝐅 ≥ 0

Most algorithms use two-block coordinate descent and solve

𝐋[𝑡] = arg min
𝐋≥0

‖𝐗 − 𝐋𝐅[𝑡−1]‖2𝐹 and 𝐅[𝑡] = arg min
𝐅≥0

‖𝐗 − 𝐋[𝑡]𝐅‖2𝐹

iteratively.

Note that the problem is symmetric in 𝐋 and 𝐅 since

‖𝐗 − 𝐋𝐅‖2𝐹 = ‖𝐗⊤ − 𝐅⊤𝐋⊤‖2𝐹 .

No separate algorithms needed for 𝐋 and 𝐅.

13/21

Short note on cost functions

Our derviation was based on Frobenius norm and inspired by the SVD-based
approach of the best rank-𝑞 approximation. However, other cost functions are
possible.

▶ Note: Cost functions determine the distribution of noise
▶ Frobenius norm implies Gaussian distribution
▶ An alternative for Poisson distributed data (count data)

𝐷(𝐗||𝐋𝐅) =
𝑝
∑
𝑖=1

𝑛
∑
𝑗=1

(𝐗(𝑖,𝑗) log 𝐗(𝑖,𝑗)

(𝐋𝐅)(𝑖,𝑗) − 𝐗(𝑖,𝑗) + (𝐋𝐅)(𝑖,𝑗))

Resembles the Kullback-Leibler divergence and the log-likelihood of
Poisson-distributed data with mean (𝐋𝐅)(𝑖,𝑗) for 𝐗(𝑖,𝑗).

14/21

Alternating least squares updates for NMF

A simple update rule is alternating least squares (ALS): Solve the unconstrained
least squares problem

𝐙[𝑡] = arg min
𝐙∈ℝ𝑞×𝑝

‖𝐗 − 𝐋[𝑡−1]𝐙‖2𝐹

and set elementwise 𝐅[𝑡] = max(𝐙[𝑡], 0). Analogous for 𝐋[𝑡].

▶ The method is cheap but can have convergence issues.
▶ Can be useful for initialisation (some steps of ALS first, then another
algorithm)

15/21

Alternating non-negative least squares updates for NMF

It holds that

‖𝐗 − 𝐋𝐅‖2𝐹 =
𝑝
∑
𝑖=1

‖𝐗(∶,𝑖) − 𝐋𝐅(∶,𝑖)‖22

=
𝑝
∑
𝑖=1

𝐅(∶,𝑖)⊤(𝐋⊤𝐋⏟
=𝐐

)𝐅(∶,𝑖) + (− 𝐋⊤𝐗(∶,𝑖)⏟⎵⎵⏟⎵⎵⏟
=𝐜

)⊤𝐅(∶,𝑖) + ‖𝐗(∶,𝑖)‖22

Minimizing over 𝐅(∶,𝑖) ≥ 0, this is a sum of 𝑝 independent non-negative least
squares (NNLS) problems. The resulting update rule is called alternating NNLS.

NNLS problems are equivalent to quadratic programming problems of the form

arg min
𝐱≥0

1
2𝐱

⊤𝐐𝐱 + 𝐜⊤𝐱

for positive semi-definite 𝐐.
16/21

Multiplicative updates for NMF

Multiplicative updates (MU) have been popularized by Lee and Seung (1999).
Their form depends on the cost function. In the following 𝐀 ∘ 𝐁 denotes
elementwise multiplication of matrices and division is also meant elementwise.

1. Frobenius norm:

𝐋 ← 𝐋 ∘ 𝐗𝐅⊤
𝐋𝐅𝐅⊤ and 𝐅 ← 𝐅 ∘ 𝐋⊤𝐗

𝐋⊤𝐋𝐅
2. KL divergence:

𝐋(𝑙,𝑘) ← 𝐋(𝑙,𝑘)
∑𝑝

𝑖=1 𝐅(𝑘,𝑖)𝐗(𝑙,𝑖)/(𝐋𝐅)(𝑙,𝑖)

∑𝑝
𝑖=1 𝐅(𝑘,𝑖)

and

𝐅(𝑘,𝑖) ← 𝐅(𝑘,𝑖)
∑𝑛

𝑙=1 𝐋(𝑙,𝑘)𝐗(𝑙,𝑖)/(𝐋𝐅)(𝑙,𝑖)

∑𝑛
𝑙=1 𝐋(𝑙,𝑘)

17/21

Multiplicative updates for NMF and gradient descent

Multiplicative updates are a special case of gradient descent. Let
𝐽(𝐋, 𝐅) = 1

2
‖𝐗 − 𝐋𝐅‖2𝐹 then

∇𝐋𝐽 = 𝐋𝐅𝐅⊤ − 𝐗𝐅⊤

∇𝐅𝐽 = 𝐋⊤𝐋𝐅 − 𝐋⊤𝐗
Gradient descent in 𝐋 for step-length 𝛼 performs

𝐋 ← 𝐋 − 𝛼∇𝐋𝐽
It can be shown that

𝜶 = 𝐋
𝐋𝐅𝐅⊤ ∈ ℝ𝑛×𝑞,

where division is element-wise, is an admissible step length. Element-wise
multiplication of 𝜶 and ∇𝐋𝐽 yields the MU for 𝐋. Analogously for 𝐅.

Note: Analogous results hold for the KL divergence.
18/21

Advantages of NMF

▶ Interpretability: As in the case of truncated SVD we are adding layers, but
now all layers are positive and each layer adds information

▶ Clustering interpretation:
▶ The rows of 𝐅 can be interpreted as cluster centroids
▶ Cluster membership of each observation is determined by the rows of 𝐋
▶ Observation 𝑗 is assigned to the cluster 𝑘 if 𝐋(𝑗,𝑘) > 𝐋(𝑗,𝑖) for all 𝑖 ≠ 𝑘

19/21

Initialising NMF

NMF can be initialised in multiple ways

▶ Random initialisation: Uniformly distributed entries in [0, 1] for 𝐋 and 𝐅
▶ Clustering techniques: Run k-means with 𝑞 clusters on data, store cluster
centroids in rows of 𝐅 and 𝐋(𝑙,𝑘) ≠ 0 ⇔ 𝐗(𝑙,∶) belongs to cluster 𝑘

▶ SVD: Determine best rank-𝑞-approximation∑𝑞
𝑖=1 𝑑𝑖𝑖𝐯𝑖𝐮⊤𝑖 , note that

𝑑𝑖𝑖𝐮𝑖𝐯⊤𝑖 = ([+𝑑𝑖𝑖𝐮𝑖]+[+𝐯⊤𝑖]+ + [−𝑑𝑖𝑖𝐮𝑖]+[−𝐯⊤𝑖]+)
− ([+𝑑𝑖𝑖𝐮𝑖]+[−𝐯⊤𝑖]+ + [−𝑑𝑖𝑖𝐮𝑖]+[+𝐯⊤𝑖]+)

and initialize NMF by summing only the positive parts or the larger of the
positive parts.

20/21

Take-home message

▶ Linear dimension reduction approximates matrices through additive layers
(hence linear).

▶ The SVD-based approach leads to factor analysis, built on the intuition that
there are underlying factors describing the data and the intensity of their
presence in a sample is quantified in the loadings

▶ By adding non-negativity constraints to the matrix factorisation problem,
NMF creates more interpretable results and can be used for clustering at the
same time

21/21

