Lecture 11: Data representations - Linear methods

Felix Held, Mathematical Sciences

MSA220/MVE440 Statistical Learning for Big Data
$7^{\text {th }}$ May 2020

Goals of data representation

Dimension reduction while retaining important aspects of the data

Goals can be

- Visualisation
- Interpretability/Variable selection
- Data compression
- Finding a representation of the data that is more suitable to the posed question

Let us start with linear dimension reduction.

Re-cap: SVD

The singular value decomposition (SVD) of a matrix $\mathbf{X} \in \mathbb{R}^{n \times p}, n \geq p$, is

$$
\mathbf{X}=\mathbf{U D V} \mathbf{V}^{\top}
$$

where $\mathbf{U} \in \mathbb{R}^{n \times p}$ and $\mathbf{V} \in \mathbb{R}^{p \times p}$ with

$$
\mathbf{U}^{\top} \mathbf{U}=\mathbf{I}_{p} \quad \text { and } \quad \mathbf{V}^{\top} \mathbf{V}=\mathbf{V} \mathbf{V}^{\top}=\mathbf{I}_{p}
$$

and $\mathbf{D} \in \mathbb{R}^{p \times p}$ is diagonal.
Usually the diagonal elements of \mathbf{D} are sorted such that

$$
d_{11} \geq d_{22} \geq \ldots \geq d_{p p}
$$

SVD and best rank- q-approximation (I)

Write \mathbf{u}_{j} and \mathbf{v}_{j} for the columns of \mathbf{U} and \mathbf{V}, respectively. Then

$$
\mathbf{X}=\mathbf{U D V}^{\top}=\sum_{j=1}^{p} d_{j j} \underbrace{\mathbf{u}_{j} \mathbf{v}_{j}^{\top}}_{\text {rank-1-matrix }}
$$

Best rank- q-approximation: For $q<p$

$$
\mathbf{X}_{q}=\sum_{j=1}^{q} d_{j j} \mathbf{u}_{j} \mathbf{v}_{j}^{\top}
$$

approximates \mathbf{X} as a sum of layers with approximation error

$$
\left\|\mathbf{X}-\mathbf{X}_{q}\right\|_{F}^{2}=\left\|\sum_{j=q+1}^{p} d_{j j} \mathbf{u}_{j} \mathbf{v}_{j}^{\top}\right\|_{F}^{2}=\sum_{j=q+1}^{p} d_{j j}^{2}
$$

Alternative view of best rank- q-approximation

Using only the first $q<\min (p, n)$ columns of \mathbf{V} and \mathbf{U}, and the first q rows and columns of \mathbf{D}, leads to

$$
\mathbf{X}_{q}=\mathbf{U}_{q} \mathbf{D}_{q} \mathbf{V}_{q}^{\top} .
$$

According to the Eckart-Young-Mirsky theorem, the matrix \mathbf{X}_{q} is a solution to the following minimization problem (see website for proof)

$$
\underset{\operatorname{rank}(\mathbf{M})=q}{\arg \min }\|\mathbf{X}-\mathbf{M}\|_{F}^{2}
$$

The solution is unique if the $q+1$-th singular value is different from the the q-th singular value.

Alternative view of the Eckart-Young-Mirsky problem

For $q<\min (p, n)$, set $\mathbf{L}:=\mathbf{U}_{q} \mathbf{D}_{q} \in \mathbb{R}^{n \times q}$ and $\mathbf{F}=\mathbf{V}_{q}^{\top} \in \mathbb{R}^{q \times p}$.
Then $\mathbf{X}_{q}=\mathbf{L F}$ is a solution of

$$
\underset{\mathbf{L} \in \mathbb{R}^{n \times q}, \mathbf{F} \in \mathbb{R}_{q \times p}}{\arg \min }\|\mathbf{X}-\mathbf{L F}\|_{F}^{2}
$$

Notes:

- Whereas \mathbf{X}_{q} can be the unique minimizer for the original minimisation problem, the matrices \mathbf{F} and \mathbf{L} are not unique.
- This is just PCA: When using SVD to compute the PCA of \mathbf{X}, then the columns of \mathbf{V} contain the PC directions and the rows of \mathbf{F} the first q of them. Projecting the data onto the PCs but then reconstructing it means to compute $\left(\mathbf{X V}_{q}\right) \mathbf{V}_{q}^{\top}=\left(\mathbf{U D V}{ }^{\top} \mathbf{V}_{q}\right) \mathbf{V}_{q}^{\top}=\left(\mathbf{U D I}_{p \times q}\right) \mathbf{V}_{q}^{\top}=\left(\mathbf{U}_{q} \mathbf{D}_{q}\right) \mathbf{V}_{q}^{\top}=\mathbf{L F}$.

Low-rank matrix factorisation

Let $q<\min (p, n)$

$$
\underset{\mathbf{L} \in \mathbb{R}^{n \times q}, \mathbf{F} \in \mathbb{R}_{q \times p}}{\arg \min }\|\mathbf{X}-\mathbf{L F}\|_{F}^{2}
$$

Interpretation

- The rows of \mathbf{F} can be seen as basis vectors or coordinates of a subspace in feature space
- The rows of \mathbf{L} provide coefficients that combine the basis vectors in \mathbf{F} to the closest q-dimensional approximation of the respective observation
- In the framework of factor analysis the rows of \mathbf{F} are called factors and the rows of \mathbf{L} are called (latent) loadings

Notes on factor analysis

- Originated in psychometrics with the idea that factors could describe unobservable (latent) properties (e.g. intelligence)
- A typical assumption is that the rows of \mathbf{F} are orthogonal, i.e. $\mathbf{F F}^{\top}=\mathbf{I}_{q}$
- But even row orthogonality of \mathbf{F} does not ensure identifiability (uniqueness of the solution) since for a orthogonal matrix $\mathbf{R} \in \mathbb{R}^{q \times q}$

$$
\mathbf{L}^{\prime} \mathbf{F}^{\prime}:=(\mathbf{L} \mathbf{R})\left(\mathbf{R}^{\top} \mathbf{F}\right)=\mathbf{L F}
$$

and \mathbf{F}^{\prime} is orthogonal if \mathbf{F} is

- Every orthogonal matrix describes a rotation and when applied to factors and loadings it is called a factor rotation
- Through optimization of \mathbf{R}, we can make either factors (varimax rotation) or loadings (quartimax rotation) sparse

Conclusions from Factor Analysis/SVD-based approach

- The SVD-based approach is provably best in the Frobenius norm
- Best q can be easily chosen by observing the approximation error

However:

- Interpretation is difficult since layers both add and subtract information

$$
\left(d_{i i} \mathbf{u}_{i} \mathbf{v}_{i}^{\top}\right)^{(r, s)}=d_{i i} \mathbf{u}_{i}^{(r)} \mathbf{v}_{i}^{(s)}
$$

- \mathbf{U} and \mathbf{V}, respectively \mathbf{L} and \mathbf{F}, are not unique and usually dense (no zero entries)

Non-negative Matrix Factorization (NMF)

Idea: We can add constraints to the low-rank matrix factorisation problem.
Non-negative matrix factorisation (NMF): Let $q<\min (p, n)$

$$
\underset{\mathbf{L} \in \mathbb{R}^{n \times q}, \mathbf{F} \in \mathbb{R}^{q \times p}}{\arg \min }\|\mathbf{X}-\mathbf{L F}\|_{F}^{2} \quad \text { such that } \quad \mathbf{L} \geq 0, \mathbf{F} \geq 0
$$

- Sum of positive layers: $\mathbf{X} \approx \sum_{j=1}^{q} \mathbf{L}^{(:, j)} \mathbf{F}^{(j,:)}$
- No fast specialised algorithm or analytic solution exists (NP-hard problem)
- Requires that the data \mathbf{X} has to be non-negative
- L and \mathbf{F} are again not uniquely identifiable.
- Choice of q not as straight-forward as for SVD

SVD vs NMF - Example: Reconstruction

MNIST-derived zip code digits ($n=1000, p=256$)
100 samples are drawn randomly from each class to keep the problem balanced.

Red-ish colours are for negative values, white is around zero and dark stands for positive values. Reconstructions are done using 50 first PCs / $q=50$.

SVD vs NMF - Example: Basis Components

Large difference between principal components (columns of \mathbf{V}) and NMF basis components (rows of \mathbf{F})

The non-negativity constraint leads to sparsity in the basis (in F) and coefficients (in \mathbf{L}, next slide).

Therefore, NMF captures sparse characteristic parts while PCA components capture more global features.

NMF 1

PCA 7

PCA 8

NMF 2

SVD vs NMF - Example: Coefficients ()

Note the additional sparsity in the NMF coefficients.

How to solve the NMF problem?

The NMF problem is

$$
\underset{\mathbf{L} \in \mathbb{R}^{n \times q}, \mathbf{F} \in \mathbb{R}^{q \times p}}{\arg \min }\|\mathbf{X}-\mathbf{L F}\|_{F}^{2} \quad \text { such that } \quad \mathbf{L} \geq 0, \mathbf{F} \geq 0
$$

Most algorithms use two-block coordinate descent and solve

$$
\mathbf{L}^{[t]}=\underset{\mathbf{L} \geq 0}{\arg \min }\left\|\mathbf{X}-\mathbf{L F}^{[t-1]}\right\|_{F}^{2} \quad \text { and } \quad \mathbf{F}^{[t]}=\underset{\mathbf{F} \geq 0}{\arg \min }\left\|\mathbf{X}-\mathbf{L}^{[t]} \mathbf{F}\right\|_{F}^{2}
$$

iteratively.
Note that the problem is symmetric in \mathbf{L} and \mathbf{F} since

$$
\|\mathbf{X}-\mathbf{L F}\|_{F}^{2}=\left\|\mathbf{X}^{\top}-\mathbf{F}^{\top} \mathbf{L}^{\top}\right\|_{F}^{2}
$$

No separate algorithms needed for \mathbf{L} and \mathbf{F}.

Short note on cost functions

Our derviation was based on Frobenius norm and inspired by the SVD-based approach of the best rank-q approximation. However, other cost functions are possible.

- Note: Cost functions determine the distribution of noise
- Frobenius norm implies Gaussian distribution
- An alternative for Poisson distributed data (count data)

$$
D\left(\mathbf{X}|\mid \mathbf{L F})=\sum_{i=1}^{p} \sum_{j=1}^{n}\left(\mathbf{X}^{(i, j)} \log \frac{\mathbf{X}^{(i, j)}}{(\mathbf{L F})^{(i, j)}}-\mathbf{X}^{(i, j)}+(\mathbf{L F})^{(i, j)}\right)\right.
$$

Resembles the Kullback-Leibler divergence and the log-likelihood of Poisson-distributed data with mean (LF) ${ }^{(i, j)}$ for $\mathbf{X}^{(i, j)}$.

Alternating least squares updates for NMF

A simple update rule is alternating least squares (ALS): Solve the unconstrained least squares problem

$$
\mathbf{Z}^{[t]}=\underset{\mathbf{Z} \in \mathbb{R}^{q \times p}}{\arg \min }\left\|\mathbf{X}-\mathbf{L}^{[t-1]} \mathbf{Z}\right\|_{F}^{2}
$$

and set elementwise $\mathbf{F}^{[t]}=\max \left(\mathbf{Z}^{[t]}, 0\right)$. Analogous for $\mathbf{L}^{[t]}$.

- The method is cheap but can have convergence issues.
- Can be useful for initialisation (some steps of ALS first, then another algorithm)

Alternating non-negative least squares updates for NMF

It holds that

$$
\begin{aligned}
\|\mathbf{X}-\mathbf{L F}\|_{F}^{2} & =\sum_{i=1}^{p}\left\|\mathbf{X}^{(:, i)}-\mathbf{L} \mathbf{F}^{(:, i)}\right\|_{2}^{2} \\
& =\sum_{i=1}^{p} \mathbf{F}^{(:, i)^{\top}}(\underbrace{\mathbf{L}^{\top} \mathbf{L}}_{=\mathbf{Q}}) \mathbf{F}^{(:, i)}+(\underbrace{\left(\mathbf{L}^{\top} \mathbf{X}^{(:, i)}\right.}_{=\mathbf{c}})^{\top} \mathbf{F}^{(:, i)}+\left\|\mathbf{X}^{(:, i)}\right\|_{2}^{2}
\end{aligned}
$$

Minimizing over $\mathbf{F}^{(:, i)} \geq 0$, this is a sum of p independent non-negative least squares (NNLS) problems. The resulting update rule is called alternating NNLS.

NNLS problems are equivalent to quadratic programming problems of the form

$$
\underset{\mathbf{x} \geq 0}{\arg \min } \frac{1}{2} \mathbf{x}^{\top} \mathbf{Q} \mathbf{x}+\mathbf{c}^{\top} \mathbf{x}
$$

for positive semi-definite \mathbf{Q}.

Multiplicative updates for NMF

Multiplicative updates (MU) have been popularized by Lee and Seung (1999).
Their form depends on the cost function. In the following $\mathbf{A} \circ \mathbf{B}$ denotes elementwise multiplication of matrices and division is also meant elementwise.

1. Frobenius norm:

$$
\mathbf{L} \leftarrow \mathbf{L} \circ \frac{\mathbf{X F}^{\top}}{\mathbf{L F F}{ }^{\top}} \quad \text { and } \quad \mathbf{F} \leftarrow \mathbf{F} \circ \frac{\mathbf{L}^{\top} \mathbf{X}}{\mathbf{L}^{\top} \mathbf{L F}}
$$

2. KL divergence:

$$
\begin{aligned}
& \mathbf{L}^{(l, k)} \leftarrow \mathbf{L}^{(l, k)} \frac{\sum_{i=1}^{p} \mathbf{F}^{(k, i)} \mathbf{X}^{(l, i)} /(\mathbf{L F})^{(l, i)}}{\sum_{i=1}^{p} \mathbf{F}^{(k, i)}} \text { and } \\
& \mathbf{F}^{(k, i)} \leftarrow \mathbf{F}^{(k, i)} \frac{\sum_{l=1}^{n} \mathbf{L}^{(l, k)} \mathbf{X}^{(l, i)} /(\mathbf{L F})^{(l, i)}}{\sum_{l=1}^{n} \mathbf{L}^{(l, k)}}
\end{aligned}
$$

Multiplicative updates for NMF and gradient descent

Multiplicative updates are a special case of gradient descent. Let $J(\mathbf{L}, \mathbf{F})=\frac{1}{2}\|\mathbf{X}-\mathbf{L F}\|_{F}^{2}$ then

$$
\begin{aligned}
\nabla_{\mathbf{L}} J & =\mathbf{L F F}^{\top}-\mathbf{X F}^{\top} \\
\nabla_{\mathbf{F}} J & =\mathbf{L}^{\top} \mathbf{L F}-\mathbf{L}^{\top} \mathbf{X}
\end{aligned}
$$

Gradient descent in \mathbf{L} for step-length α performs

$$
\mathbf{L} \leftarrow \mathbf{L}-\alpha \nabla_{\mathbf{L}} J
$$

It can be shown that

$$
\alpha=\frac{\mathbf{L}}{\mathbf{L F F}^{\top}} \in \mathbb{R}^{n \times q},
$$

where division is element-wise, is an admissible step length. Element-wise multiplication of α and $\nabla_{\mathbf{L}} J$ yields the MU for \mathbf{L}. Analogously for \mathbf{F}.
Note: Analogous results hold for the KL divergence.

Advantages of NMF

- Interpretability: As in the case of truncated SVD we are adding layers, but now all layers are positive and each layer adds information
- Clustering interpretation:
- The rows of \mathbf{F} can be interpreted as cluster centroids
- Cluster membership of each observation is determined by the rows of \mathbf{L}
- Observation j is assigned to the cluster k if $\mathbf{L}^{(j, k)}>\mathbf{L}^{(j, i)}$ for all $i \neq k$

Initialising NMF

NMF can be initialised in multiple ways

- Random initialisation: Uniformly distributed entries in $[0,1]$ for \mathbf{L} and \mathbf{F}
- Clustering techniques: Run k -means with q clusters on data, store cluster centroids in rows of \mathbf{F} and $\mathbf{L}^{(l, k)} \neq 0 \Leftrightarrow \mathbf{X}^{(l,:)}$ belongs to cluster k
- SVD: Determine best rank-q-approximation $\sum_{i=1}^{q} d_{i i} \mathbf{v}_{i} \mathbf{u}_{i}^{\top}$, note that

$$
\begin{aligned}
d_{i i} \mathbf{u}_{i} \mathbf{v}_{i}^{\top} & =\left(\left[+d_{i i} \mathbf{u}_{i}\right]_{+}\left[+\mathbf{v}_{i}^{\top}\right]_{+}+\left[-d_{i i} \mathbf{u}_{i}\right]_{+}\left[-\mathbf{v}_{i}^{\top}\right]_{+}\right) \\
& -\left(\left[+d_{i i} \mathbf{u}_{i}\right]_{+}\left[-\mathbf{v}_{i}^{\top}\right]_{+}+\left[-d_{i i} \mathbf{u}_{i}\right]_{+}\left[+\mathbf{v}_{i}^{\top}\right]_{+}\right)
\end{aligned}
$$

and initialize NMF by summing only the positive parts or the larger of the positive parts.

Take-home message

- Linear dimension reduction approximates matrices through additive layers (hence linear).
- The SVD-based approach leads to factor analysis, built on the intuition that there are underlying factors describing the data and the intensity of their presence in a sample is quantified in the loadings
- By adding non-negativity constraints to the matrix factorisation problem, NMF creates more interpretable results and can be used for clustering at the same time

