Lecture 12: Data representations - Kernel methods

Felix Held, Mathematical Sciences

MSA220/MVE440 Statistical Learning for Big Data
$11^{\text {th }}$ May 2020

Kernel-methods

Kernels

A kernel is a function $k(\mathbf{x}, \mathbf{y}): \mathbb{R}^{p} \times \mathbb{R}^{p} \rightarrow \mathbb{R}$ that maps two elements of the feature space to a real number, such that

$$
k(\mathbf{x}, \mathbf{y})=k(\mathbf{y}, \mathbf{x}) \quad \text { and } \quad k(\mathbf{x}, \mathbf{y}) \geq 0
$$

Can be seen as a (possibly non-linear) generalized inner product without bilinearity.

Kernels measure similarity between features vectors.

Examples of kernels

- Linear kernel $k(\mathbf{x}, \mathbf{y})=\mathbf{x}^{\top} \mathbf{y}$
- Polynomial kernel $k(\mathbf{x}, \mathbf{y})=\left(\gamma \mathbf{x}^{\top} \mathbf{y}+r\right)^{m}$
- Radial basis function (RBF) kernel $k(\mathbf{x}, \mathbf{y})=\exp \left(-\frac{\|\mathbf{x}-\mathbf{y}\|_{2}^{2}}{2 \sigma^{2}}\right)$
- Laplacian kernel $k(\mathbf{x}, \mathbf{y})=\exp \left(-\alpha\|\mathbf{x}-\mathbf{y}\|_{2}^{2}\right)$
- Sigmoid kernel $k(\mathbf{x}, \mathbf{y})=\tanh \left(\alpha \mathbf{x}^{\top} \mathbf{y}+c\right)$

Mercer/positive definite kernels

For a kernel $k(\mathbf{x}, \mathbf{y})$, and a set of features $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}$ define the so-called Gram matrix

$$
\mathbf{K}=\left(\begin{array}{ccc}
k\left(\mathbf{x}_{1}, \mathbf{x}_{1}\right) & \cdots & k\left(\mathbf{x}_{1}, \mathbf{x}_{n}\right) \\
\vdots & & \vdots \\
k\left(\mathbf{x}_{n}, \mathbf{x}_{1}\right) & \cdots & k\left(\mathbf{x}_{n}, \mathbf{x}_{n}\right)
\end{array}\right)
$$

If \mathbf{K} is positive semi-definite for all n and all possible sets of features, then $k(\mathbf{x}, \mathbf{y})$ is called a Mercer or positive definite kernel.
Note: All kernels shown on the last slide except for the sigmoid kernel are positive definite.

Importance of positive definite kernels

If the gram matrix is positive semi-definite there is an orthogonal matrix $\mathbf{V} \in \mathbb{R}^{n \times n}$ and a diagonal matrix $\boldsymbol{\Lambda} \in \mathbb{R}^{n \times n}$ such that

$$
\mathbf{K}=\mathbf{V}^{\top} \boldsymbol{\Lambda} \mathbf{V}
$$

Define $\boldsymbol{\phi}\left(\mathbf{x}_{l}\right)=\boldsymbol{\Lambda}^{1 / 2} \mathbf{V}^{(:, l)}$, then

$$
\mathbf{K}^{(l, k)}=\boldsymbol{\phi}\left(\mathbf{x}_{l}\right)^{\top} \boldsymbol{\phi}\left(\mathbf{x}_{k}\right)
$$

A result known as Mercer's theorem ensures that for every positive definite kernel $k(\mathbf{x}, \mathbf{y})$ there is a mapping ϕ from the feature space to some q-dimensional space (with $q=\infty$ allowed) such that

$$
k(\mathbf{x}, \mathbf{y})=\boldsymbol{\phi}(\mathbf{x})^{\top} \boldsymbol{\phi}(\mathbf{y})
$$

Example of Mercer's theorem

Consider the polynomial kernel for $\gamma=r=1$ and $m=2$ in a two-dimensional feature space

$$
\begin{aligned}
k(\mathbf{x}, \mathbf{y}) & =\left(\mathbf{x}^{\top} \mathbf{y}+1\right)^{2}=\left(1+x_{1} y_{1}+x_{2} y_{2}\right)^{2} \\
& =1+2 x_{1} y_{1}+2 x_{2} y_{2}+\left(x_{1} y_{1}\right)^{2}+\left(x_{2} y_{2}\right)^{2}+2 x_{1} y_{1} x_{2} y_{2}
\end{aligned}
$$

Define

$$
\phi(\mathbf{x})=\left(1, \sqrt{2} x_{1}, \sqrt{2} x_{2}, x_{1}^{2}, x_{2}^{2}, \sqrt{2} x_{1} x_{2}\right)^{\top}
$$

then

$$
k(\mathbf{x}, \mathbf{y})=\boldsymbol{\phi}(\mathbf{x})^{\top} \boldsymbol{\phi}(\mathbf{y})
$$

Using this kernel to measure similarity between two-dimensional feature vectors is therefore equivalent to working in a six-dimensional feature space.

Advantages of using kernels

Summary

Using a positive definite kernel to measure the similarity between m-dimensional feature vectors is equivalent to

1. Using a (potentially non-linear) mapping to transform the feature vectors \mathbf{x} to a q-dimensional vector $\phi(\mathbf{x})$
2. Using the Euclidean scalar product to measure similarity between transformed feature vectors $\boldsymbol{\phi}(\mathbf{x})$

Problem: $\boldsymbol{\phi}(\mathbf{x})$ might be hard to compute.
The kernel-trick is to replace scalar products with kernel evaluations.
Computations are then done implicitly in the higher-dimensional space of the $\phi(\mathbf{x})$, but all we need to do is evalute the kernel.

Recap: PCA

Recall: In PCA, the goal was to find the directions of maximum variance of the data matrix $\mathbf{X} \in \mathbb{R}^{n \times p}$ by decomposing the covariance matrix

$$
\widehat{\mathbf{\Sigma}}=\frac{\mathbf{X}^{\top} \mathbf{X}}{n-1}=\mathbf{V D V}^{\top}
$$

where $\mathbf{V} \in \mathbb{R}^{p \times p}$ is orthgonal and $\mathbf{D} \in \mathbb{R}^{p \times p}$ is diagonal. Goals are

- Dimension-reduction (e.g. for visualisation)
- Finding important directions in the data relevant to e.g. classification or clustering

Limitations of PCA

PCA is linear and cannot uncover non-linear structures

Raw data

Transformed with PCA

Augmentation of features can help

Augmented data with $z=x^{2}+y^{2}$

Kernels and PCA (I)

Idea: Use the kernel-trick to define augmentations implicitly and keep computations manageable.

Given a positive definite kernel $k(\mathbf{x}, \mathbf{y})$, how can we perform PCA in the high-dimensional space of $\phi(\mathbf{x})$?

Assume we have access to $\phi\left(\mathbf{x}_{l}\right)$ for $l=1, \ldots, n$ and these transformed vectors are centred. Then we can perform PCA on

$$
\widehat{\boldsymbol{\Sigma}}^{\phi}=\frac{1}{n} \sum_{l=1}^{n} \boldsymbol{\phi}\left(\mathbf{x}_{l}\right) \boldsymbol{\phi}\left(\mathbf{x}_{l}\right)^{\top}=\mathbf{V D V}^{\top}
$$

where \mathbf{v}_{i} are the principal component axes and d_{i} the corresponding variances.

Kernels and PCA (II)

Note that

$$
\begin{aligned}
& \widehat{\boldsymbol{\Sigma}}^{\phi} \mathbf{v}_{i}=\frac{1}{n} \sum_{l=1}^{n} \boldsymbol{\phi}\left(\mathbf{x}_{l}\right) \boldsymbol{\phi}\left(\mathbf{x}_{l}\right)^{\top} \mathbf{v}_{i}=d_{i} \mathbf{v}_{i} \\
\Leftrightarrow & \mathbf{v}_{i}=\sum_{l=1}^{n} \frac{\phi\left(\mathbf{x}_{l}\right)^{\top} \mathbf{v}_{i}}{d_{i} n} \boldsymbol{\phi}\left(\mathbf{x}_{l}\right)=\sum_{l=1}^{n} \mathbf{a}_{i}^{(l)} \boldsymbol{\phi}\left(\mathbf{x}_{l}\right)
\end{aligned}
$$

Multiplying this presentation of \mathbf{v}_{i} from the left on both sides with $\phi\left(\mathbf{x}_{k}\right)^{\top}$ leads to (for all $k=1, \ldots, n$)

$$
d_{i} n \mathbf{a}_{i}^{(k)}=\boldsymbol{\phi}\left(\mathbf{x}_{k}\right)^{\top} \mathbf{v}_{i}=\sum_{l=1}^{n} \mathbf{a}_{i}^{(l)} \boldsymbol{\phi}\left(\mathbf{x}_{k}\right)^{\top} \boldsymbol{\phi}\left(\mathbf{x}_{l}\right)=\sum_{l=1}^{n} \mathbf{a}_{i}^{(l)} k\left(\mathbf{x}_{k}, \mathbf{x}_{l}\right)
$$

In total, \mathbf{a}_{i} is a solution to the eigenvalue problem

$$
\mathbf{K} \mathbf{a}_{i}=d_{i} n \mathbf{a}_{i}
$$

Kernels and PCA (III)

The coefficients \mathbf{a}_{i} to determine the principal component directions \mathbf{v}_{i} in the space of the $\boldsymbol{\phi}\left(\mathbf{x}_{i}\right)$ can therefore be found by

- Solving the eigenvalue problem for $\mathbf{K a}_{i}=d_{i} n \mathbf{a}_{i}$ requiring that

$$
1=\mathbf{v}_{i}^{\top} \mathbf{v}_{i}=\sum_{l, k=1}^{n} \mathbf{a}_{i}^{(l)} \mathbf{a}_{i}^{(k)} \boldsymbol{\phi}\left(\mathbf{x}_{l}\right)^{\top} \boldsymbol{\phi}\left(\mathbf{x}_{k}\right)=\mathbf{a}_{i}^{\top} \mathbf{K} \mathbf{a}_{i}
$$

- This is the Rayleigh quotient problem for the matrix K. Note that both \mathbf{a}_{i} and d_{i} have to be determined.

The i-th principal component projection of an arbitrary mapped feature vector $\phi(\mathbf{x})$ is therefore

$$
\boldsymbol{\phi}(\mathbf{x})^{\top} \mathbf{v}_{i}=\sum_{l=1}^{n} \mathbf{a}_{i}^{(l)} k\left(\mathbf{x}, \mathbf{x}_{l}\right)
$$

This procedure is called kernel-PCA (kPCA).

Centring and kernel PCA

- The derivation assumed that the implicitly defined feature vectors $\boldsymbol{\phi}\left(\mathbf{x}_{l}\right)$ were centred. What if they are not?
- In the derivation we look at scalar products $\boldsymbol{\phi}\left(\mathbf{x}_{i}\right)^{\top} \boldsymbol{\phi}\left(\mathbf{x}_{l}\right)$. Centring in the implicit space leads to

$$
\begin{aligned}
& \left(\boldsymbol{\phi}\left(\mathbf{x}_{i}\right)-\frac{1}{n} \sum_{j=1}^{n} \boldsymbol{\phi}\left(\mathbf{x}_{j}\right)\right)^{\top}\left(\boldsymbol{\phi}\left(\mathbf{x}_{l}\right)-\frac{1}{n} \sum_{j=1}^{n} \boldsymbol{\phi}\left(\mathbf{x}_{j}\right)\right)= \\
& \mathbf{K}^{(i, l)}-\frac{1}{n} \sum_{j=1}^{n} \mathbf{K}^{(i, j)}-\frac{1}{n} \sum_{j=1}^{n} \mathbf{K}^{(j, l)}+\frac{1}{n^{2}} \sum_{j=1}^{n} \sum_{m=1}^{n} \mathbf{K}^{(j, m)}
\end{aligned}
$$

- Using the centring matrix $\mathbf{J}=\mathbf{I}_{n}-\frac{1}{n} \mathbf{1 1}^{\top}$, centring in the implicit space is equivalent to transforming \mathbf{K} as

$$
\mathbf{K}^{\prime}=\mathbf{J K J}
$$

General algorithm for kPCA

1. Choose a kernel $k(\cdot, \cdot)$ and possible hyper-parameters
2. Compute the Gram matrix $\mathbf{K} \in \mathbb{R}^{n \times n}$ for the data $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}$
3. Centre \mathbf{K} using $\mathbf{J}=\mathbf{I}_{n}-\frac{1}{n} \mathbf{1 1}^{\top}$ to get

$$
\mathbf{K}^{\prime}=\mathbf{J K J}
$$

4. Perform a normal linear PCA on $\mathbf{K}^{\prime}=\mathbf{A} \mathbf{\Lambda} \mathbf{A}^{\top}$.
5. The columns of \mathbf{A} are the vectors \mathbf{a}_{i} and set $d_{i}=\lambda_{i} / n$.
6. The projection of the l-th observation onto the i-th principal component axis is computed as

$$
\eta_{l}^{(i)}=\mathbf{K}^{(l,:)} \mathbf{a}_{i} \in \mathbb{R}
$$

Example: kPCA

Raw data

Transformed with PCA

Transformed with kPCA
RBF kernel, $\sigma=0.7$

Kernel trick in other algorithms

Recap: Ridge regression

Ridge regression solves the problem

$$
\hat{\boldsymbol{\beta}}=\underset{\boldsymbol{\beta}}{\arg \min }\|\mathbf{y}-\mathbf{X} \boldsymbol{\beta}\|_{2}^{2}+\lambda\|\boldsymbol{\beta}\|_{2}^{2}
$$

with analytical solution

$$
\hat{\boldsymbol{\beta}}=\left(\mathbf{X}^{\top} \mathbf{X}+\lambda \mathbf{I}_{p}\right)^{-1} \mathbf{X}^{\top} \mathbf{y}
$$

The kernel trick requires scalar products between feature vectors. Note that

$$
\left(\mathbf{X} \mathbf{X}^{\top}\right)^{(i, j)}=\mathbf{x}_{i}^{\top} \mathbf{x}_{j}
$$

but here we have $\mathbf{X}^{\top} \mathbf{X}$.

Woodbury matrix identity

Assume that matrices $\mathbf{A} \in \mathbb{R}^{p \times p}$ and $\mathbf{C} \in \mathbb{R}^{n \times n}$ are invertible and let $\mathbf{U} \in \mathbb{R}^{p \times n}$ and $\mathbf{V} \in \mathbb{R}^{n \times p}$. The Woodbury matrix identity then holds

$$
(\mathbf{A}+\mathbf{U C V})^{-1}=\mathbf{A}^{-1}-\mathbf{A}^{-1} \mathbf{U}\left(\mathbf{C}^{-1}+\mathbf{V A}^{-1} \mathbf{U}\right)^{-1} \mathbf{V} \mathbf{A}^{-1}
$$

For a data matrix $\mathbf{X} \in \mathbb{R}^{n \times p}$, let $\mathbf{U}=\mathbf{X}^{\top}, \mathbf{V}=\mathbf{X}, \mathbf{A}=\lambda \mathbf{I}_{p}$ for $\lambda>0$, and $\mathbf{C}=\mathbf{I}_{n}$.

$$
\begin{aligned}
\left(\mathbf{X}^{\top} \mathbf{X}+\lambda \mathbf{I}_{p}\right)^{-1} \mathbf{X}^{\top} & =\left(\frac{1}{\lambda} \mathbf{I}_{p}-\frac{1}{\lambda} \mathbf{I}_{p} \mathbf{X}^{\top}\left(\mathbf{I}_{n}+\mathbf{X} \frac{1}{\lambda} \mathbf{I}_{p} \mathbf{X}^{\top}\right)^{-1} \mathbf{X} \frac{1}{\lambda} \mathbf{I}_{p}\right) \mathbf{X}^{\top} \\
& =\frac{1}{\lambda} \mathbf{X}^{\top}\left(\mathbf{I}_{n}-\left(\lambda \mathbf{I}_{n}+\mathbf{X} \mathbf{X}^{\top}\right)^{-1} \mathbf{X} \mathbf{X}^{\top}\right) \\
& =\frac{1}{\lambda} \mathbf{X}^{\top}\left(\left(\lambda \mathbf{I}_{n}+\mathbf{X} \mathbf{X}^{\top}\right)^{-1}\left(\lambda \mathbf{I}_{n}+\mathbf{X} \mathbf{X}^{\top}\right)-\left(\lambda \mathbf{I}_{n}+\mathbf{X} \mathbf{X}^{\top}\right)^{-1} \mathbf{X} \mathbf{X}^{\top}\right) \\
& =\frac{1}{\lambda} \mathbf{X}^{\top}\left(\left(\lambda \mathbf{I}_{n}+\mathbf{X} \mathbf{X}^{\top}\right)^{-1}\left(\lambda \mathbf{I}_{n}+\mathbf{X} \mathbf{X}^{\top}-\mathbf{X} \mathbf{X}^{\top}\right)\right) \\
& =\mathbf{X}^{\top}\left(\lambda \mathbf{I}_{n}+\mathbf{X} \mathbf{X}^{\top}\right)^{-1}
\end{aligned}
$$

Kernel ridge regression

Using the Woodbury matrix regression we get that

$$
\hat{\beta}=\mathbf{X}^{\top}\left(\mathbf{X} \mathbf{X}^{\top}+\lambda \mathbf{I}_{n}\right)^{-1} \mathbf{y} .
$$

We can now replace $\mathbf{X} \mathbf{X}^{\top}$ with a Gram matrix \mathbf{K} for an arbitrary kernel $k(\cdot, \cdot)$.
The variables $\hat{\beta}$ are called the primal variables. Define the dual variables

$$
\widehat{\alpha}=\left(\mathbf{K}+\lambda \mathbf{I}_{n}\right)^{-1} \mathbf{y} \Rightarrow \hat{\beta}=\mathbf{X}^{\top} \widehat{\alpha}=\sum_{l=1}^{n} \hat{\boldsymbol{\alpha}}^{(l)} \mathbf{x}_{l}
$$

Using the dual variables, computed with a chosen kernel, as weights for the observations to compute the primal variables is called kernel ridge regression.

Standard ridge regression is recovered when using the linear kernel

$$
k(\mathbf{x}, \mathbf{y})=\mathbf{x}^{\top} \mathbf{y}
$$

Prediction in kernel ridge regression

In normal ridge ression, we predict for unseen test data \mathbf{x} as

$$
\widehat{f}(\mathbf{x})=\hat{\boldsymbol{\beta}}^{\top} \mathbf{x}=\sum_{l=1}^{n} \widehat{\boldsymbol{\alpha}}^{(l)} \mathbf{x}_{l}^{\top} \mathbf{x}
$$

Using the kernel trick and replacing scalar products with kernel evaluations leads to

$$
\widehat{f}(\mathbf{x})=\sum_{l=1}^{n} \widehat{\boldsymbol{\alpha}}^{(l)} k\left(\mathbf{x}_{l}, \mathbf{x}\right)
$$

for kernel ridge regression.

Take-home message

- Kernels in combination with Mercer's theorem are a powerful tool to make high-dimensional computation manageable
- kPCA is a first example demonstrating the power of kernels
- The kernel trick can also be used in other established methods like ridge regression

