Lecture 14: Large-scale methods for data analysis

Felix Held, Mathematical Sciences

MSA220/MVE440 Statistical Learning for Big Data
$25^{\text {th }}$ May 2020

Low-rank approximations for matrices

Low-rank approximations

- Low-rank approximations of matrices become very important to make large-scale data manageable

$$
\underset{n \times p}{\mathbf{X}} \approx \underset{n \times q}{\mathbf{A}} \cdot \underset{q \times p}{\mathbf{B}}
$$

- Algorithms to determine A and B discussed in the lecture: Low-rank SVD and low-rank NMF
- Works best if original data in \mathbf{X} is approximately of $\operatorname{rank} q \ll \min (n, p)$
- \mathbf{X} could be a really large data matrix, but it could also come from an intermediate calculation, e.g. a Gram matrix or a distance matrix
- NMF and SVD are computationally efficient if either n or p are reasonably small to medium sized (computational complexity $O\left(n^{2} p+p^{3}\right)$ for SVD)

Dimension reduction to the rescue

Assume for now that \mathbf{X} actually has rank $q \ll \min (n, p)$. Then we could find an exact factorisation $\mathbf{X}=\mathbf{A B}$, e.g. using the SVD truncated after q terms.

SVD on the full matrix is too expensive, but can we cheaply reduce at least one of the dimensions?

Since \mathbf{X} is assumed to have rank q, its image

$$
\operatorname{Im}(\mathbf{X})=\left\{\mathbf{y}: \mathbf{y}=\mathbf{X} \mathbf{w} \text { for some } \mathbf{w} \in \mathbb{R}^{p}\right\}
$$

is only q dimensional. Projecting the columns of \mathbf{X} at least approximately to a q-dimensional space leaves the overall structure of the data intact.

But how do we choose the projection?

Dimension reduction through random projection (I)

Recall: To project the data onto the first principal component direction \mathbf{r}_{1} it was enough to compute

$$
\mathbf{p}_{1}=\mathbf{X} \mathbf{r}_{1}
$$

Let ω_{i} for $i=1, \ldots, q$ be random vectors (e.g. with standard normal entries). Then, the vectors

$$
\mathbf{y}_{i}=\mathbf{X} \omega_{i}
$$

are called random projections and can be shown to be linearly independent with high probability.

This can be seen as a cheap and approximate way of exploring the range of \mathbf{X}.
Why is this a justifable strategy?

Johnson-Lindenstrauss lemma (I)

Johnson-Lindenstrauss lemma (1984)

Given $0<\varepsilon<1$ and an integer n let

$$
q \geq \frac{4 \log (n)}{\varepsilon^{2} / 2-\varepsilon^{3} / 3}
$$

be an integer. For every set of points $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}$ in \mathbb{R}^{p}, there is a mapping $f: \mathbb{R}^{p} \mapsto \mathbb{R}^{q}$ such that for any $\mathbf{x}_{i}, \mathbf{x}_{j}$

$$
(1-\varepsilon)\left\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\|_{2}^{2} \leq\left\|f\left(\mathbf{x}_{i}\right)-f\left(\mathbf{x}_{j}\right)\right\|_{2}^{2} \leq(1+\varepsilon)\left\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\|_{2}^{2}
$$

Note: The result is independent of p.

Johnson-Lindenstrauss lemma (II)

For small ε the exact result is mainly of interest for $p \gg n$.

n	ε	$q_{\min }$
3	0.1	942
50	0.05	12951
	0.1	3354
	0.5	188
100	0.1	3948
1000	0.1	5921

Note: In practice, the dimension of the data is reduced to any useful dimension. However, be aware that the theoretical guarantees potentially are lost.

Random projection

There are multiple possibilities how the map f in the Johnson-Lindenstrauss theorem can be found.

Let $\mathbf{X} \in \mathbb{R}^{n \times p}$ be a data matrix and q the target dimension.

- Gaussian random projection: Set

$$
\Omega_{i j} \sim N\left(0, \frac{1}{q}\right) \quad \text { for } \quad i=1, \ldots, p, j=1, \ldots, q
$$

- Sparse random projection: For a given $s>0$ set

$$
\Omega_{i j}=\sqrt{\frac{s}{q}}\left\{\begin{array}{cll}
-1 \\
0 \\
1
\end{array} \quad \text { with probability } \begin{array}{l}
1 /(2 s) \\
1-1 / s \\
\\
1 /(2 s)
\end{array}\right.
$$

for $i=1, \ldots, p, j=1, \ldots, q$ where often $s=3$ or $s=\sqrt{p}$
then $\mathbf{Y}=\mathbf{X} \Omega \in \mathbb{R}^{n \times q}$ is a random projection for \mathbf{X}.

Random projections and the Johnson-Lindenstrauss lemma

Let $\mathbf{X} \in \mathbb{R}^{n \times p}$ where $X^{(i, j)} \sim N(0,1 / \sqrt{p}), n=3, \varepsilon=0.1$ and Gaussian random projections onto the minimum JL dimension $q=942$ were performed.

p	$(1-\varepsilon)\left\\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\\|$	$\left\\|\boldsymbol{\Omega} \mathbf{x}_{i}-\boldsymbol{\Omega} \mathbf{x}_{j}\right\\|$	$(1+\varepsilon)\left\\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\\|$
3	1.02	1.14	1.2
	1.55	1.73	1.9
	0.81	0.89	1.0
1000	1.29	1.41	1.6
	1.26	1.38	1.5
	1.26	1.42	1.5
15000	1.26	1.39	1.5
	1.27	1.45	1.6
	1.26	1.39	1.5

Dimension reduction through random projection (II)

Let $q<\min (n, p), \boldsymbol{\Omega} \in \mathbb{R}^{p \times q}$ a random projection matrix and set $\mathbf{Y}=\mathbf{X} \boldsymbol{\Omega}$.
A q-dimensional subspace of the range of \mathbf{X} can be found by orthonormalising \mathbf{Y} using e.g. the QR-decomposition (computational complexity $O\left(n q^{2}-q^{3} / 3\right)$)

$$
\mathbf{Y}=\mathbf{Q} \mathbf{R}
$$

where $\mathbf{Q} \in \mathbb{R}^{n \times q}$ has orthogonal columns and $\mathbf{R} \in \mathbb{R}^{q \times q}$ is upper-triangular.
Assuming \mathbf{X} is approximately of $\operatorname{rank} q$ it can be shown that

$$
\mathbf{X} \approx \mathbf{Q Q}^{\top} \mathbf{X}
$$

where $\mathbf{Q} \mathbf{Q}^{\top} \in \mathbb{R}^{n \times n}$ is a random orthogonal projection matrix to a q-dimensional subspace of the range of \mathbf{X}.

Randomized low-rank SVD

Original goal: Apply SVD in cases where both n and p are large.
Idea: Determine an approximate low-dimensional basis for the range of \mathbf{X} and perform the matrix-factorisation in the low-dimensional space.

- Using a random projection $\mathbf{X} \approx \mathbf{Q Q}^{\top} \mathbf{X}=\mathbf{Q T}$
- Note that $\mathbf{T} \in \mathbb{R}^{q \times p}$ and q is small
- Calculate the SVD of $\mathbf{T}=\underset{q \times q}{\mathbf{U}_{0}} \cdot \underset{q \times q}{\mathbf{D}} \cdot \underset{q \times p}{\mathbf{V}^{\top}}$
- Set $\mathbf{U}=\mathbf{Q} \mathbf{U}_{0} \in \mathbb{R}^{n \times q}$, then $\mathbf{X} \approx \mathbf{U D V}^{\top}$

The SVD of \mathbf{X} can therefore be found by random projection into a q-dimensional subspace of the range of \mathbf{X}, performing SVD in the lower-dimensional subspace and subsequent reconstruction of the vectors into the original space.

Notes on randomized low-rank SVD

- In practice the matrix \mathbf{X} will most-likely not have rank q but rather a continuous spectrum of eigenvalues that go towards zero
- Possible solutions:
- Oversampling: Create a random projection matrix of size $p \times(q+k)$ where k is a small integer. Setting $k=5$ or 10 is often enough in practice
- Power iterations: Instead of $\mathbf{Y}=\mathbf{X} \boldsymbol{\Omega}$ consider $\mathbf{Y}=\left(\mathbf{X X}^{\top}\right)^{l} \mathbf{X} \boldsymbol{\Omega}$ for some integer l. This ensures that small eigenvalues of \mathbf{X} are forced to zero and only large eigenvalues are dominant.
- The idea of randomized computation can be applied to other algorithms as well, e.g. PCA, eigenvalues, ...
- Implemented in R package rsvd or Python's sklearn (as randomized_svd)

Divide and conquer

Divide and conquer

Example: Divide and Conquer for linear regression

In linear regression, we want to find the regression coefficients $\hat{\beta}$, which can be calculated as

$$
\hat{\boldsymbol{\beta}}=\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{y}
$$

Divide the data into K parts $\mathbf{X}_{1}, \ldots, \mathbf{X}_{K}$, such that \mathbf{X} is the row concatenation of its parts.Then estimate (conquer)

$$
\hat{\boldsymbol{\beta}}_{k}=\left(\mathbf{X}_{k}^{\top} \mathbf{X}_{k}\right)^{-1} \mathbf{X}_{k}^{\top} \mathbf{y}_{k}
$$

To recombine the parts, consider that

$$
\hat{\boldsymbol{\beta}}=\left(\sum_{k} \mathbf{X}_{k}^{\top} \mathbf{X}_{k}\right)^{-1}\left(\sum_{k} \mathbf{X}_{k}^{\top} \mathbf{X}_{k} \hat{\boldsymbol{\beta}}_{k}\right)
$$

This means that $\hat{\boldsymbol{\beta}}_{k}$ and $\mathbf{X}_{k}^{\top} \mathbf{X}_{k} \in \mathbb{R}^{p \times p}$ have to be returned from each batch.
Note: Since $\operatorname{Cov}\left(\hat{\boldsymbol{\beta}}_{k}\right)=\sigma^{2}\left(\mathbf{X}_{k}^{\top} \mathbf{X}_{k}\right)^{-1}$ the recombination is a weighted average of the batch estimates. Here, σ^{2} is the variance of the residual error.

Example: Divide and Conquer for general estimation problems

In a general estimation problem (regression or MLE) there is often a need to solve the score equation

$$
\sum_{l=1}^{n} \boldsymbol{\Psi}\left(y_{l} ; \mathbf{x}_{l}, \theta\right)=\mathbf{0}
$$

where y_{l} is a response, \mathbf{x}_{l} a vector of predictors, and θ a vector of parameters.

Examples:

- Normal equations in linear regression $\sum_{l=1}^{n}\left(y_{l}-\mathbf{x}_{l}^{\top} \boldsymbol{\beta}\right) \mathbf{x}_{l}=\mathbf{0}$
- Maximum likelihood estimation $\sum_{l=1}^{n} \frac{\partial \log f\left(y_{l} ; \mathbf{x}_{l}, \theta\right)}{\partial \theta}=\mathbf{0}$

Advanced example (II)

To apply Divide and Conquer to this problem, divide the data into K subsets S_{k} and solve the subproblems

$$
\mathbf{M}_{k}(\theta)=\sum_{l \in S_{k}} \Psi\left(y_{l} ; \mathbf{x}_{l}, \theta\right)=\mathbf{0}
$$

Per batch, the estimate is $\hat{\theta}_{k}$.
Compute

$$
\mathbf{A}_{k}(\theta):=-\frac{\mathrm{d} \mathbf{M}_{k}(\theta)}{\mathrm{d} \theta}=-\sum_{l \in S_{k}} \frac{\partial \Psi\left(y_{l} ; \mathbf{x}_{l}, \theta\right)}{\partial \theta}
$$

and use the 1st order Taylor expansion of \mathbf{M}_{k} in $\hat{\theta}_{k}$ to get

$$
\mathbf{M}_{k}(\theta) \approx \mathbf{A}_{k}\left(\hat{\theta}_{k}\right)\left(\theta-\hat{\theta}_{k}\right)
$$

Advanced example (III)

Returning to the full problem of solving the score equation

$$
\mathbf{0}=\sum_{l=1}^{n} \boldsymbol{\Psi}\left(y_{l} ; \mathbf{x}_{l}, \theta\right)=\sum_{k=1}^{K} \mathbf{M}_{k}(\theta) \approx \sum_{k=1}^{K} \mathbf{A}_{k}\left(\hat{\theta}_{k}\right)\left(\theta-\hat{\theta}_{k}\right)
$$

The solution to the approximation is then given by

$$
\hat{\theta}=\left(\sum_{k=1}^{K} \mathbf{A}_{k}\left(\hat{\theta}_{k}\right)\right)^{-1}\left(\sum_{k=1}^{K} \mathbf{A}_{k}\left(\hat{\theta}_{k}\right) \hat{\theta}_{k}\right)
$$

Note: For this approximation the per-batch covariance matrices $\mathbf{X}_{k}^{\top} \mathbf{X}_{k}$ are replaced by the matrices $\mathbf{A}_{k}\left(\hat{\theta}_{k}\right)$.
In case of the MLE example

$$
\mathbf{A}_{k}\left(\hat{\theta}_{k}\right)=-\sum_{l \in S_{k}} \frac{\partial^{2} \log f\left(y_{l} ; \mathbf{x}_{l}, \theta\right)}{\partial \theta^{2}}
$$

which is the observed Fisher information.

Sampling methods for big-n

Recap: Random Forests

Computational procedure:

1. Given training data $\mathbf{X} \in \mathbb{R}^{n \times p}$, do for $b=1, \ldots, B$
1.1 Draw a bootstrap sample of size n from training data (with replacement)
1.2 Grow a tree T_{b} until nodes are pure or reach minimal node size $n_{\text {min }}$
1.2.1 Randomly select m variables out of p variables
1.2.2 Find best splitting variable among these m
1.2.3 Split the node
2. For a new \mathbf{x} predict

$$
\text { Regression: } \quad \widehat{f}_{r f}(\mathbf{x})=\frac{1}{B} \sum_{b=1}^{B} T_{b}(\mathbf{x})
$$

Classification: Majority vote at \mathbf{x} across trees
For big- n : In principal all trees can be grown in parallel. However, this requires B bootstrap samples of size n which can be infeasibly large in a big- n scenario.

Big- n and the bootstrap

The m-out-of- n bootstrap

Instead of drawing a bootstrap sample of n samples with replacement (as in the standard bootstrap), a smaller sample of size $m<n$ is drawn with replacement.

- Note: If $m<n$ samples are drawn without replacement, then this is called subsampling.
- Surprisingly, the m-out-of- n bootstrap (moon bootstrap) works even in situations where the standard bootstrap fails
- For the theoretical guarantees to hold, it is required that when $m, n \rightarrow \infty$ then $m / n \rightarrow 0$
- $m=2 \sqrt{n}$ is a possible choice

Example: m-out-of- n bootstrap

- Let $x_{1}, \ldots, x_{n} \sim \operatorname{Uniform}(0, \theta)$ and $\hat{\theta}_{n}=\max _{i} x_{i}$.
- Consider the statistics
- $T_{n}=n\left(\theta-\hat{\theta}_{n}\right)$, the statistic to be approximated
- $T_{n}^{*}=n\left(\hat{\theta}_{n}-\hat{\theta}_{n}^{*}\right)$ where $\hat{\theta}_{n}^{*}=\max _{i} x_{i}^{*}$ for a standard bootstrap sample $x_{1}^{*}, \ldots, x_{n}^{*}$
- $T_{n, m}^{*}=m\left(\hat{\theta}_{n}-\hat{\theta}_{n, m}^{*}\right)$ where $\hat{\theta}_{n, m}^{*}=\max _{i} x_{i}^{*}$ for a standard bootstrap sample $x_{1}^{*}, \ldots, x_{m}^{*}$
- Simulated data with $n=1000, m=2 \sqrt{1000} \approx 64, B=10000$, and $\theta=1$

The red line is the density of T_{n} given the true θ.

Bag of little bootstraps (BLB)

A two-stage bootstrapping technique

1. Draw K subsets of size $m<n$ from original data (with or without replacement)
2. For each subset
2.1 Draw B set of weights $\left(n_{1}, \ldots, n_{m}\right) \sim \operatorname{Multinomial}(n, 1 / m)$ (oversampling)
2.2 Estimate the statistic of interest from the B weighted samples
2.3 Combine values of the statistic for each subset, e.g. by averaging
3. Recombine statistics from each subset, e.g. by averaging

This is known as the bag of little bootstraps (BLB) (Kleiner et al. 2014)

Notes on the BLB

- One of the computational burdens of the standard bootstrap is having to create resamples of size n
- The BLB circumvents that by resampling from a limited amount of samples and thereby being able to use weights instead of a full sample
- Typically $m \geq n^{\gamma}$ for $\gamma \in[0.5,1]$ works well (e.g. for $\gamma=0.6$: when $n=10^{6}$ choose $m=3982$)
- The BLB is easier to parallelise, since less data has to be propagated to each batch.
- Fits well within the Divide and Conquer framework

Random forests for big-n

Instead of the standard RF with normal bootstrapping, multiple strategies can be taken

- Subsampling (once): Take a subsample of size m and grow RF from there. Very simple to implement, but difficult to ensure that the subsample is representative.
- m-out-of- n sampling: Instead of standard bootstrapping, draw repeatedly m samples and grow a tree on each subsample. Recombine trees in the usual fashion.
- BLB sampling: Grow a forest on each subset by repeatedly oversampling to n samples.
- Divide and Conquer: Split original data in K parts and grow a random forest on each.

Subsampling for big-n

Leverage

Problem: Representativeness

How can we ensure that a subsample is still representative?
We need additional information about the samples. Consider the special case of linear regression and $n \gg p$.

Recall: For least squares predictions it holds that

$$
\hat{\mathbf{y}}=\mathbf{X} \hat{\boldsymbol{\beta}}=\mathbf{X}\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{y}=\mathbf{H y}
$$

with the hat-matrix $\mathbf{H}=\mathbf{X}\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top}$.
Specifically $\hat{\mathbf{y}}^{(i)}=\sum_{j=1}^{n} \mathbf{H}^{(i, j)} \mathbf{y}^{(j)}$, which means that $\mathbf{H}^{(i, i)}$ influences its own fitted values.

Element $\mathbf{H}^{(i, i)}$ is called the leverage of the i-th observation. Leverage captures if the observation i is close or far from the centre of the data in feature space.

Leveraging (I)

Goal: Subsample the data, but make the more influential data points, those with high leverage, more likely to be sampled.

Computational approach

- Weight sample i by

$$
\pi_{i}=\frac{\mathbf{H}^{(i, i)}}{\sum_{j=1}^{n} \mathbf{H}^{(j, j)}}
$$

- Draw a weighted subsample of size $m \ll n$
- Use the subsample to solve the regression problem

This procedure is called Leveraging (Ma and Sun, 2013).

Leveraging (II)

Problem: How to perform regression?

1. Ordinary least squares: Biased with regard to the full sample estimate, due to subsampling, but unbiased with respect to the true coefficients and generally small variance
2. Weighted least squares: Use the inverse sampling weights $1 / \pi_{i}$ as weights during the regression. Unstable for very small weights, i.e. high variance. Weights can be stabilized by using

$$
\tau_{i}=\alpha \pi_{i}+(1-\alpha) \frac{1}{n}
$$

instead of π_{i} for α recommended at 0.8-0.9.

Leveraging (III)

Problem: How should the diagonal entries of the hat matrix be determined without having to solve the original regression problem?

Let $\mathbf{X}=\mathbf{U D V}^{\top}$ be the SVD of the data matrix, then

$$
\mathbf{H}=\mathbf{X}\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top}=\mathbf{U} \mathbf{U}^{\top}
$$

and therefore, with \mathbf{u}_{i} being the i-th row of \mathbf{U},

$$
\mathbf{H}^{(i, i)}=\left\|\mathbf{u}_{i}\right\|_{2}^{2}
$$

Using e.g. randomized SVD or other fast computational approaches, this is feasible for very large data.

Notes on leveraging

- Pro: Fast and simple approach to make subsampling more focused on the important samples
- Pro: Smaller datasets are easier to use computationally, but also visualisations get feasible again
- Caveat: Careful with outliers! These often have large leverage, but are misrepresentative of the actual shape of the data.

Take-home message

- Large-scale data brings its own challenges, many of which are computational
- Randomization can help to speed up classical algorithms in practice
- Divide and Conquer can help in $n \gg p$ and big- n scenarios; can be non-trivial to determine how to recombine
- Subsampling/clever bootstrapping can reduce the necessary computational load tremendously

