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Improving the Lasso



Recall the lasso

The lasso estimator of a linear regression problem is the solution to

̂𝜷Lasso = arg min
𝜷∈ℝ𝑝

1
2𝑛

𝑛
∑
𝑙=1

‖𝑦𝑙 − 𝐱⊤𝑙 𝜷‖22 + 𝜆‖𝜷‖1

For orthogonal predictors, i.e. 𝐗⊤𝐗 = 𝐈𝑝, we have an analytical solution

̂𝜷(𝑗)Lasso(𝜆) = sign ( ̂𝜷(𝑗)OLS) (| ̂𝜷(𝑗)OLS| − 𝜆)
+
= ST ( ̂𝜷(𝑗)OLS, 𝜆)

where (𝑥)+ = 𝑥 if 𝑥 > 0 and zero otherwise.

The lasso performs variable selection by setting some entries ̂𝜷(𝑖)Lasso = 0, thereby
using only those features with non-zero coefficients in ̂𝜷Lasso for prediction.
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The ideal case

Oracle procedure
Assume the true subset of non-zero coefficients is 𝒜 = {𝑗 ∶ 𝜷(𝑗)true ≠ 0}. An oracle
procedure leads to an estimator ̂𝜷 such that

1. the right variables are identified, i.e. {𝑗 ∶ ̂𝜷(𝑗) ≠ 0} = 𝒜.
2. the estimation rate is optimal, i.e. √𝑛( ̂𝜷𝒜 − 𝜷𝒜true)

𝑑−→ 𝑁(𝟎, 𝚺) for 𝑛 → ∞ where
̂𝜷𝒜 is the restriction of ̂𝜷 to elements with indices in 𝒜.

Note that these two conditions in particular imply that 𝔼[ ̂𝜷] → 𝜷true for 𝑛 → ∞.

Does the lasso produce an oracle estimator? Unfortunately (in general) not.
▶ In general {𝑗 ∶ ̂𝜷(𝑗)Lasso ≠ 0} ≠ 𝒜 even for 𝑛 → ∞ and
▶ ̂𝜷Lasso ↛ 𝜷true for 𝑛 → ∞ even though √𝑛( ̂𝜷Lasso − 𝜷true) converges in
distribution in most cases
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Finding an oracle estimator

It can be shown that the issues with the lasso arise from the penalisation of the
residual sum of squares by ‖𝜷‖1.

It can be argued (Fan and Li, 2001) that an ideal penalty function should have
the following properties

▶ singularity at zero, leading to sparsity,
▶ no penalisation of large coefficients, leading to unbiased estimates away
from zero,

▶ differentiability away from zero, and
▶ convexity.

The smoothly clipped absolute deviation (SCAD) penalty combines all these
except convexity.
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Smoothly clipped absolute deviation (SCAD) penalty

The penalty is defined by its derivative 𝑝′𝜆,𝑎(𝜃) = 𝜆 (1(𝜃 ≤ 𝜆) + (𝑎𝜆−𝜃)+
(𝑎−1)𝜆

1(𝜃 > 𝜆))
for 𝜃 > 0, 𝜆 ≥ 0, and 𝑎 > 2. This integrates to

𝑝𝜆,𝑎(𝜃) =
⎧⎪
⎨⎪
⎩

𝜆𝜃 0 < 𝜃 ≤ 𝜆
−𝜃2−2𝑎𝜆𝜃+𝜆2

2(𝑎−1)
𝜆 < 𝜃 ≤ 𝑎𝜆

(𝑎+1)𝜆2

2
𝜃 > 𝑎𝜆
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SCAD penalty and linear regression

If the SCAD penalty is used to replace the ℓ1 penalty in the lasso problem and
features are orthogonal, then the coefficients can be analytically computed as

̂𝜷(𝑗)SCAD =
⎧⎪
⎨⎪
⎩

ST( ̂𝜷(𝑗)OLS, 𝜆) | ̂𝜷(𝑗)OLS| ≤ 2𝜆
((𝑎 − 1) ̂𝜷(𝑗)OLS − sign( ̂𝜷(𝑗)OLS)𝑎𝜆) /(𝑎 − 2) 2𝜆 < | ̂𝜷(𝑗)OLS| ≤ 𝑎𝜆
̂𝜷(𝑗)OLS | ̂𝜷(𝑗)OLS| > 𝑎𝜆
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Summary: SCAD penalty

▶ Good news
▶ The SCAD penalty gets rid of bias for larger coefficients, but also leads to a
sparse solution vector.

▶ Under some theoretical conditions on the size of 𝜆 as 𝑛 → ∞ it can be shown
that the SCAD penalised linear regression problem is a oracle procedure

▶ Bad news
▶ The penalty is not convex and standard optimization approaches cannot be
used. The authors of the method (Fan and Li, 2001) proposed an algorithm
based on local approximations.
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Spectral clustering



Starting point

▶ Many clustering methods focus on global behaviour of the data (e.g. GMM,
k-means, hierarchical clustering with complete linkage)

▶ To adapt to local behaviour hierarchical clustering with single linkage and
the group of density-based algorithms (e.g. DBSCAN) showed some success

▶ In dimension reduction building a graph of the data based on 𝑘 nearest
neighbours helped to capture local behaviour (e.g. Isomap)

▶ Idea: Build a graph representing local behaviour in the data and find good
cut points to partition the graph into 𝐾 clusters.

7/24



Graphs and adjacency matrices
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An adjacency matrix 𝐀 ∈ {0, 1}𝑛×𝑛 describes edges between 𝑛
nodes such that 𝐀(𝑖,𝑗) = 1 when there is an edge between nodes
𝑖 and 𝑗 and zero otherwise.

In addition, weights can be added to the edges, leading to a
weighted adjacency matrix𝐖 ∈ [0,∞)𝑛×𝑛.

For the graph on the left

𝐀 =
⎛
⎜
⎜
⎜
⎝

0 1 1 1
1 0 1 0
1 1 0 0
1 0 0 0

⎞
⎟
⎟
⎟
⎠

and 𝐖 =
⎛
⎜
⎜
⎜
⎝

0 0.3 2 0.25
0.3 0 1 0
2 1 0 0

0.25 0 0 0

⎞
⎟
⎟
⎟
⎠

Note: Undirected graphs have symmetric adjacency matrices. Directed graphs
can be described by unsymmetric adjacency matrices. 8/24



A graph from data

Recall: In the first step of Isomap, a weighted undirected graph was built based
on the 𝑘 nearest neighbours of a data point.
A weighted undirected graph can be constructed from a weighted adjacency
matrix𝐖.

1. For a data point 𝐱𝑙, find the 𝑘 nearest neighbours.
2. Set𝐖(𝑙,𝑙𝑖) = 𝑔(‖𝐱𝑙 − 𝐱𝑙𝑖‖2) where 𝑔 ∶ [0,∞) → [0,∞) is a monotone function
and 𝐱𝑙𝑖 , 𝑖 = 1, … , 𝑘 are the nearest neighbours of 𝐱𝑙. In addition, set all
𝐖(𝑙,𝑚) = 0 for 𝑚 ∉ {𝑙1, … , 𝑙𝑘} (in particular𝐖(𝑙,𝑙) = 0).

3. Construct a graph where each node represents a data point 𝐱𝑙 and there is a
weighted edge between 𝐱𝑙 and 𝐱𝑚 if𝐖(𝑙,𝑚) > 0.

In Isomap 𝑔(𝑧) = 𝑧, but in the following 𝑔𝑐(𝑧) = exp(−𝑧2/𝑐) for 𝑐 > 0.
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Node degree and the graph Laplacian

Given the weighted adjacency matrix𝐖, the degree of node 𝑙 describes how
well-connected a node is

𝑑𝑙 =
𝑛
∑
𝑚=1

𝐖(𝑙,𝑚)

and the degree matrix is 𝐃 = diag(𝑑1, … , 𝑑𝑛).
Define now the graph Laplacian, a measure of information flow, as

𝐋 = 𝐃 −𝐖
Interpretation: If heat were to be distributed from node to node with flow
speeds described by𝐖, then 𝐋 takes the role of the discretised Laplacian
operator ∇2 in the heat equation for the heat distribution 𝝓

d𝝓
d𝑡 + 𝑘𝐋𝝓 = 𝟎
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Graph cutting

A good separation of the graph into two parts 𝐴 and 𝐵 is one where flow
between the parts is minimized and neither is chosen too small, i.e.

min
𝐴,𝐵

( 1
vol(𝐴) +

1
vol(𝐵)) ∑

𝑙∈𝐴,𝑚∈𝐵
𝐖(𝑙,𝑚)

where vol(𝐴) = ∑
𝑙∈𝐴

𝑛
∑
𝑚=1

𝐖(𝑙,𝑚) = ∑
𝑙∈𝐴

𝑑𝑙

Raw data and graph Graph edge weights Clustering result

0.0 0.1 0.2
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Finding good cut points

Finding the best cut point would require to check all possible cuts and is an
NP-hard combinatorial problem.
Observations and theorem
1. The graph Laplacian is symmetric and positive semi-definite, since
𝐲⊤𝐋𝐲 = ∑𝑛

𝑖,𝑗=1𝐖(𝑖,𝑗)(𝐲(𝑖) − 𝐲(𝑗))2 ≥ 0 for all 𝐲 ∈ ℝ𝑛.
2. If there are 𝐾 connected components of the graph, then the set of
eigenvectors of 𝐋 with eigenvalue 0 is spanned by 𝟏𝐴𝑘 for 𝑘 = 1,… , 𝐾, where
𝟏(𝑖)𝐴𝑘

= 1 if 𝑖 ∈ 𝐴𝑘 and zero otherwise.

In practice
▶ There will not be 𝐾 separate connected components
▶ However, if 𝐾 clusters exist, the smallest 𝐾 eigenvalues will be near zero and
the and corresponding eigenvectors close to indicator vectors. 12/24



Spectral Clustering

1. Determine the weighted adjacency matrix𝐖 and the graph Laplacian 𝐋
2. Find the 𝐾 smallest eigenvalues of 𝐋 that are near zero and well separated
from the others

3. Find the corresponding eigenvectors 𝐔 = (𝐮1, … , 𝐮𝐾) ∈ ℝ𝑛×𝐾 and use
k-means on the rows of 𝐔 to determine cluster membership
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Laplacian Eigenmaps for dimension reduction

▶ In addition to clustering, the eigenvectors of the Laplacian can also be used for
dimension reduction.

▶ For each component, use the 𝑞 eigenvectors corresponding to the 𝑞 smallest
non-zero eigenvalues as an embedding of the original data.

▶ Laplacian Eigenmaps can be shown to optimally preserve the local behaviour on
average, but not necessarily global behaviour.
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Network graphs



Network Graphs

Graphs can be used to describe networks between different abstract objects.
Given some data for a set of variables (the nodes) it is often of interest to
estimate the best corresponding graph.

Some typical examples are

▶ Links on websites
▶ Co-authorship of scientific articles
▶ Protein interaction networks
▶ Friends/followers in social networks
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Types of graphs for networks

To describe data, the following types of graphs are often used
▶ Correlation graph: Undirected edges weighted by the correlation between
variables.
Caveat: Correlation can be due to a common ancestor.

▶ Partial correlation graph: Undirected edges weighted by the correlation
between variables given all other variables. This measures how much
correlation is left once all other variables are controlled for.

▶ Directed acyclic graphs: Weighted directed edges without cycles describing
causality between nodes.

As usual in statistics, recall that

Correlation does not imply causality.
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Partial correlation graphs

Assume there are 𝑝 features in a dataset and represent each feature by a node
in a graph. Denote the nodes as 𝐱(1), … , 𝐱(𝑝), where 𝐱 is a random feature vector
before data is observed.

The weight of the edge between variables 𝐱(𝑖) and 𝐱(𝑗) is their partial correlation

Corr(𝐱(𝑖), 𝐱(𝑗)|𝐱(𝑘), 𝑘 ≠ 𝑖, 𝑗) = 𝜌(𝑖,𝑗) = 𝜌(𝑗,𝑖)

▶ If 𝜌(𝑖,𝑗) = 0 there is no edge between 𝐱(𝑖) and 𝐱(𝑗).
▶ 𝜌(𝑖,𝑗) captures the information left after controlling for 𝐱(𝑘) for 𝑘 ≠ 𝑖, 𝑗, i.e.
the correlation that cannot be explained through a common ancestor
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Partial correlation and the normal distribution

Assume now that feature vectors are distributed as

𝐱 ∼ 𝑁(𝟎, 𝚺)

then 𝛀 = 𝚺−1 is called the precision matrix. It can be shown that

▶ 𝜌𝑖𝑗 = − 𝛀(𝑖,𝑗)

√𝛀(𝑖,𝑖)𝛀(𝑗,𝑗)
▶ With 𝐱(−𝑖) = (𝐱(1), … , 𝐱(𝑖−1), 𝐱(𝑖+1), … , 𝐱(𝑝))

𝑝(𝐱(𝑖)|𝐱(−𝑖)) = 𝑁 (−∑
𝑗≠𝑖

𝛀(𝑖,𝑗)

𝛀(𝑖,𝑖) 𝐱
(𝑗), 1

𝛀(𝑖,𝑖))

It is therefore enough to estimate the precision matrix and show that if
0 = 𝛀(𝑖,𝑗) = 𝜌𝑖𝑗 then there is no dependence of 𝐱(𝑖) on 𝐱(𝑗), and vice versa.
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Estimating the precision matrix

It can be shown that the log-likelihood of the precision matrix 𝛀 given the
empirical covariance matrix is

𝑙(𝛀) = log(|𝛀|) − tr(�̂�𝛀)

▶ Can be used to estimate 𝛀 with iterative methods.
▶ In general, all entries will be non-zero and therefore all edges will be
present in the resulting network.
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Precision matrix and graph structure

1. For a known graph structure 𝚪 where Γ𝑖𝑗 ∈ {0, 1} the constrained problem

arg min
𝛀

−𝑙(𝛀) subject to 𝜔𝑖𝑗 = 0 ⇔ 𝛾𝑖𝑗 = 0

can be solved.
2. If the graph structure is unknown lasso regularisation can help to uncover
relevant edges. This leads to

arg min
𝛀

−𝑙(𝛀) + 𝜆∑
𝑖<𝑗

||𝛀(𝑖,𝑗)||

which can be solved with neighbourhood regression-based lasso or
gradient-based lasso. This is called the Graphical lasso (glasso).
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Example of network estimation

Assume the following empirical covariance matrix and graph structure

𝚺 =
⎛
⎜
⎜
⎜
⎝

10 1 5 4
1 10 2 6
5 2 10 3
4 6 3 10

⎞
⎟
⎟
⎟
⎠

and 𝚪 =
⎛
⎜
⎜
⎜
⎝

1 1 0 1
1 1 1 0
0 1 1 1
1 0 1 1

⎞
⎟
⎟
⎟
⎠
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Graphical lasso: More advanced example

Protein flow
cytometry data
(𝑛 = 7466 cells,
𝑝 = 11 proteins)

Single network estimates
from runs of the glasso for
increasing 𝜆
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Notes on Graphical lasso

▶ Warning: Network estimation with the glasso is unfortunately notoriously
unstable, requiring e.g. repeated estimation on bootstrapped samples of
the data

▶ As with any lasso method, the two main caveats are
1. If too many variables are highly correlated, the network graph cannot be
identified

2. Is the true data generating process sparse?
▶ Networks are often very interesting to analyse and can reveal a lot about the
relationship of variables
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Take-home message

▶ Graphs are very useful tools that can be used for (among other things)
dimension reduction, clustering and correlation estimation

▶ The lasso has short-comings that can be addressed by modifying the ℓ1
penalty

▶ Lasso-like techniques can help to estimate sparse networks helping in the
interpretation of complex datasets
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