
1.8 Some basic aspects of field theory

Here we discuss two key aspects of Lagrangian field theory: 1) Noether’s theorem, and

2) gauging of symmetries. This will provide enough background to understand the Higgs

mechanism which will the subject of the first home problem (see Canvas).

Lagrangian field theory has many nice features as for instance providing an easy way

to derive the field equations and a fundamental connection between global symmetries and

conservations laws. After having discussed these aspects of field theory we will turn the

global symmetries into local ones, also called gauge symmetries, as a means of constructing

interactions between various fields. This will turn out to be a key property that can be

used to construct models for elementary particle physics.

1.8.1 Noether’s theorem

We start by introducing a free complex scalar field � with the Lagrangian

L = @µ�
?@µ��m2�?�. (1.148)

This Lagrangian has a global U(1) (or phase) symmetry

�(x) ! �0(x) = ei↵�(x), (1.149)

where ↵ is a real constant parameter (angle). The fact that this transformation does not

a↵ect the coordinates xµ means that symmetry is an internal one. For small ↵ the variation

of the field �� becomes

��(x) := (�0(x)� �(x))|O(↵) = i↵�(x). (1.150)

The variation of the action functional S[�,�?] =
R
d4xL(�(x),�?(x)) is then

�S[�,�?] := (S[�0,�0?]�S[�,�?])|O(��,��?) =

Z
d4x

�
L(�0(x),�0?(x))� L(�(x),�?(x))

�
|O(��,��?).

(1.151)

Inserting the relation �0 = �+ �� and its c.c. into the above variation we get

�S[�,�?]

=

Z
d4x

�
@µ(�

? + ��?)@µ(�+ ��)�m2(�? + ��?)(�+ ��)� (@µ�
?@µ��m2�?�

�
)|O(��,��?)

=

Z
d4x

�
@µ��

?@µ��m2��?�+ c.c.
�
. (1.152)

The last step is to perform an integration by parts so that the derivatives do not act on

the field variations. This gives (recall that ⇤ := @µ@µ = @2
t �r

2 in the metric used here)

�S[�,�?] =

Z
d4x

�
���?(⇤�+m2�)� (⇤�? +m2�?)��

�

+

Z
d4x @µ(��

?@µ�+ ��@µ�?), (1.153)
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where the first line is called the bulk term and the second line the boundary term.

One can also perform a constant coordinate transformation xµ ! x0µ = xµ + ⇠µ

(where ⇠µ are constant real parameters) which means that a scalar field transforms19 as

�� = �⇠µ@µ� (and similarly for complex fields � and �?). Such a transformation is called

external. For a real scalar field the Lagrangian then behaves as follows:

�⇠L = �⇠(
1

2
@µ�@

µ�) = @µ�@
µ�⇠� = �@µ�@

µ(⇠⌫@⌫�) = �
1

2
⇠⌫@⌫(

1

2
@µ�@

µ�) = �⇠⌫@⌫L,

(1.154)

from which we can conclude that the Lagrangian is a scalar quantity transforming the same

way as the scalar field �. The point here is, however, that the Lagrangian does transform

showing that the transformation is an external one. The action is, however, invariant. We

will return to this below.

The variation of the action above can be expressed in general terms as follows,

�S[�, ��] =

Z
d4x

✓
@L

@�
� @µ

@L

@(@µ�)

◆
��+

Z
d4x@µ

✓
@L

@(@µ�)
��

◆
, (1.155)

where � can now represent any kind of field and the mass term above can be part of a more

general potential term V (�), or even more general interaction terms containing di↵erent

kinds of fields like ieAµ(@µ�?)�+ c.c..

We emphasise at this point that � and ��, which appear in �S[�, ��], are both arbi-

trary functions and completely independent of each other. The result above can then be

used in two fundamentally di↵erent ways, 1) to derive field equations and 2) to establish

the connection between global symmetries and conserved charges. We will later show that

these conserved charges are actually generators of the symmetries that gave rise to them

in the first place. This is a important fact used many times in this course.

1) Hamilton’s principle

This principle states that the equations of motion, in the form of the Euler-Lagrange (EL)

equations, follow by demanding that the action be stationary under variations of the fields

that vanish at the initial and final time of S =
R
tf

ti
L. Thus imposing �S = 0 on the

variation above has two implications:

The vanishing of the bulk term implies EL:

@L

@�
� @µ

@L

@(@µ�)
= 0, (1.156)

while the vanishing of the boundary term implies one of two boundary conditions (b.c.) in

the space directions

Dirichlet b.c. : ��|space = 0, or Neumann b.c.
@L

@(@µ�)
|space = 0. (1.157)

19A scalar field transforms as �0(x0) = �(x) which implies that ��(x) := �
0(x)��(x) = �

0(x0�⇠)��(x) =

�
0(x0)� ⇠

µ
@µ�

0(x0)� �(x) = �⇠
µ
@µ�

0(x0) = �⇠
µ
@µ�(x) to first order in small quantities.
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2) Noether’s theorem
20

This theorem follows by combining a) and b):

a) Let �s� be a symmetry transformation. Then, for any field configuration �(x), �s� is a

symmetry i↵ for some J we have (recall the coordinate transformations above)

�S[�, �s�] =

Z
d4x@µJ

µ(�, �s�). (1.158)

b) Now let instead � = �̄ be an on-shell field configuration (i.e., satisfying the EL equa-

tions). Then for any variation �� we have

�S[�̄, ��] =

Z
d4x@µ

✓
@L

@(@µ�)
|
�=�̄

��

◆
. (1.159)

We can now set � = �̄ and �� = �s� in both results above, a) and b), and then subtract

them. This leads to Noether’s theorem

@µj
µ = 0, where jµ =

@L

@(@µ�)
�s�� Jµ. (1.160)

Thus on-shell any global (continuous) symmetry implies a conserved current.

Comment 1 Conserved currents (i.e., divergence-free currents @µjµ = 0) lead to the

conservation of the corresponding charges Q =
R
d3x j0 (recall that j0 is the charge den-

sity). In fact, @µjµ = 0 if written out in components gives the continuity equation. Thus

it implies the conservation of charge as follows:

Q̇ = @tQ = @t

Z

V

d3xj0 =

Z

V

d3xj̇0 = �

Z

V

d3xr · j = �

Z

@V

j · dS, (1.161)

where we have used Gauss’ law in the last equality. Here V is the volume containing the

charges and @V its boundary. Since the current j is assumed to be zero far away from the

system (or at infinity) the charge Q is a fixed, time independent, number.

Comment 2 As we will see more in detail later the charge in the previous comment is

also the generator of the symmetry that gave rise to the charge. A rather direct and

clear example of this is the momentum operator pµ = (p0,p) = i@µ. Note that in the

signature in PS this gives the usual QM relation p = �ir := �i@i. Then we see that

ei⇠
i
p
i
= e⇠

i
@i which when acting on a function gives e⇠

i
@if(x) = f(x+ ⇠) showing that p is

the generator of translations in space. But p is also the conserved charge coming from the

global translation symmetry in space directions via the stress tensor and Noether’s theorem.

The same argument in the time direction leads directly to the Schoedinger equation in QM

which is the infinitesimal version of the above statement for the time translation operator

H, the Hamiltonian, (using Poisson or commutator brackets). In general charges likeH and

p are called generators while their exponential relatives ei�tH and ei⇠
i
p
i
are group elements

(for momenta pµ this is an abelian group since partial derivatives commute).

20The following approach to Noether’s theorem can be found in a review by Bañados, hep-th/1601.03616.
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1.8.2 The gauge principle

Turning global symmetries into local ones, or gauge symmetries, is of fundamental im-

portance in all field theory descriptions of elementary particles, gravity and often even

of condensed matter systems. An argument for taking such a step, i.e., of ”gauging a

global symmetry”, can be made by invoking Lorentz invariance and unitarity as we will see

later in the course. At this point, let us accept the importance of this step as a means of

constructing interacting field theories and discuss it in the example of a complex scalar field.

As already mentioned above the Lagrangian

L = @µ�
?@µ��m2�?�. (1.162)

has a global U(1) symmetry

�(x) ! �0(x) = ei↵�(x), (1.163)

which is obvious since the parameter ↵ is a constant (i.e., spacetime independent). Turning

↵ into a function of spacetime ↵(x), i.e., ”gauging the symmetry”, implies immediately

that the Lagrangian is no longer invariant under the new, gauged, transformation: It is

not gauge invariant. The problem resides in the kinetic term since the derivatives makes

it impossible to cancel the phase factors ei↵(x) against each other. To fix this problem one

has to introduce a gauge field Aµ and a covariant derivative

Dµ = @µ + ieAµ, (1.164)

where e is the charge of the complex field Dµ is acting on. By defining the gauge field

to transform under gauge transformations as Aµ ! A0
µ = Aµ � @µ↵(x) we find that the

kinetic term above becomes gauge invariant due to the defining property of the covariant

derivative (namely that it transforms the same as the field does): � ! �0 = eie↵(x)�

implies (note the di↵erence to PS eq 4.6, the transformation of Aµ cannot depend on �)

Dµ� ! (Dµ�)
0 : = @µ�

0 + ieA0
µ�

0 = @µ(e
ie↵(x)�) + ie(Aµ � @µ↵(x))e

ie↵(x)�

= eie↵(x)(@µ�+ ieAµ�) = eie↵(x)Dµ�. (1.165)

Consider now the gauge invariant Lagrangian of scalar QED: (recall Fµ⌫ = @µA⌫ �@⌫Aµ)

L = �
1

4
Fµ⌫F

µ⌫ +Dµ�
?Dµ��m2�?�. (1.166)

By writing out explicitly the scalar field kinetic term we discover its interactions with the

gauge field Aµ:

Dµ�
?Dµ� = @µ�

?@µ�+ ieAµ ((@
µ�?)�� �?(@µ�)) + e2AµA

µ�?�. (1.167)

There are two important implications of this result:

1. The charge current jµ is defined by identifying the second term with Aµjµ. Thus, jµ is

a real and conserved (@µjµ = 0 on-shell) quantity

jµ := ie ((@µ�?)�� �?(@µ�)) . (1.168)
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Exercise: Show that jµ is real and conserved on-shell (use the field equations obtained

from L above).

2. From the Lagrangian we see that � is a massive field and Aµ is massless. However,

let us assume that � has a constant real background vacuum expectation value, a V EV ,

denoted v. This means that �(x) = v + '(x) where '(x) is the deviation, or fluctuation,

away from the constant value v. A standard way to write this V EV is v = h�i. Then in

the kinetic term for the scalar field we find the term

L(Aµ,','
?; v) = ......+ e2v2AµA

µ, (1.169)

which shows that also the vector field is massive if v 6= 0. This simple fact is the basis of

the Higgs e↵ect that gives masses to some of the vector gauge fields (Z and W±) and the

spin 1/2 matter fields in the standard model of particle physics. The Higgs particle itself

is another result of this process. For the theory to accomplish this by itself one has to add

to the above Lagrangian a fourth order scalar potential term which forces the theory into

a stable vacuum away from � = 0, i.e., to go through a phase transition.

Exercise: Does the sign of the mass term above for the vector field make sense? (Mass

terms must add positive contributions to the energy!)
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