
1.9.2 Causality and the Feynman propagator

The next topic is causality and its relation to the Feynman propagator. Causality refers to

the fact that physical e↵ects cannot travel faster than the speed of light. If we, e.g., in QM

compute the transition amplitude h(t0, r0)|(t, r)i and find a non-zero result for t0 = t then it

violates causality since physics at r will a↵ect physics at r0 instantaneously. The forward

light-cone is invariant under continuous Lorentz transformations, that is all Lorentz

transformations that are continuously connected to the identity, i.e., the unit matrix (no

boosts and no space rotations). This means that in a Minkowski diagram particles must

move in time inside or on the forward light-cone.

As will be elaborated upon in connection with the Dirac equation the full Lorentz

group contains also the discrete transformations T and P , time and space reversals (parity),

respectively. In this context the continuous Lorentz transformations are called the proper

orthochronous Lorentz group and is denoted ⇤"
+ having ⇤0

0 > 0 and det⇤ > 0.

To put the causality issue into context we analyse it in three cases, non-relativistic

QM, relativistic QM, and Klein-Gordon QFT.

1) Non-relativistic QM

Consider the transition amplitude U(r2, r1; t) for a particle propagating from r1 to r2 in

time t. This time evolution is generated by Ĥ = p̂2

2m and the amplitude is therefore given

by (here objects with hats are operators)

U(r2, r1; t) = hr2|e
�itĤ

|r1i = hr2|e
�it

p̂2

2m |r1i =

Z
d3p

(2⇡)3
e�it

p2

2m eip·(r2�r1), (1.228)

which is obtained by inserting two complete sets of momentum states and using hp|ri =

e�ip·r. The momentum integrals are done directly one direction at a time by completing the

square and using
R1
�1 dx e�ax

2
=

p
⇡

a
. Since the exponent in question is purely imaginary

one might add to it a real part �✏p2 (in each direction) and let ✏ go to zero at the end.

The result is, in terms of r := |r2 � r1|,

U(r2, r1; t) = (
m

2⇡it
)3/2e

im
2t r

2
, (1.229)

which clearly is not causal. The transition probability is given by |U(r2, r1; t)|2.

2) Relativistic QM

The di↵erence to the previous case is the Hamiltonian which now is Ĥrel =
p
p̂2 +m2.

The transition amplitude then becomes

U(r2, r1; t) = hr2|e
�itĤrel |r1i = hr2|e

�it

p
p̂2+m2

|r1i =

Z
d3p

(2⇡)3
e�ip·(x2�x1), (1.230)

where the exponent has become relativistic while the integral is not since it lacks a factor

E�1
p as we learned in the previous lecture. On the RHS above p0 = Ep =

p
p2 +m2.

Writing the exponent as p · x = tEp � pr cos ✓ (with the somewhat sloppy notation that
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after the equality sign p means |p| and r = |r2 � r1|, while t = t2 � t1). Doing the angle

integrals in
R
d3p =

R1
0 dp

R
d⌦ we get

U(r2, r1; t) =
1

2⇡2r

Z 1

0
dp p sin(pr) e�it

p
p2+m2

. (1.231)

This integral can either be done exactly and seen to yield a modified Bessel function or

analysed by means of the ”stationary phase approximation” (or steepest descent method).

Using the latter approach we write sin(pr) as two exponentials and consider the total

exponent in the integrand f(p) = pr ⌥ t
p
p2 +m2. The parts of the p integral where

the exponent fluctuates wildly give small contributions to the answer so one can pick up

the leading contributions by looking for extremal points of the exponent. So if p̄ is an

extremum of f(p), i.e., f 0(p̄) = 0, an expansion around p̄ (recall that here p := |p|) gives

f(p) = f(p̄) + f 0(p̄)(p� p̄) +
1

2
f 00(p̄)(p� p̄)2 + ..., (1.232)

where the first term is a constant and gives an exponential factor outside the integral,

the second term is zero and the third one gives the first non-vanishing contribution to the

integrand which is then Gaussian (although with an i in the exponent).

To perform these steps using f(p) = pr ⌥ t
p
p2 +m2 we first determine p̄:

f 0(p̄) = r ⌥
p̄tp

p̄2 +m2
= 0 ) p̄ = ±i

m
p
r2 � t2

. (1.233)

This result should then be used in f(p̄) to get the exponential factor which is

U(r2, r1; t) / ef(p̄) = e⌥m
p
r2�t2 . (1.234)

In addition to this the Gaussian integral gives a factor t

(r2�t2)5/4
. This result can also be

obtained from the modified Bessel function in the limit r2 � t2 ! 1. Thus we see that for

a given time t the correlation has infinite range in r and is therefore not casual (non-zero

for r2 > t2).

3. QFT

In QFT the object that best resembles the transition amplitudes discussed above in QM

is, for a real scalar field, (compare to the relativistic amplitude above)

D(x2 � x1) := h0|�(x2)�(x1)|0i =

Z
d3p

(2⇡)3
1

2Ep
e�ip·(x2�x1)|p0=Ep

, (1.235)

which follows from

h0|ap0a†p|0i = h0|[ap0 , a†p]|0i = (2⇡)3�3(p0
� p). (1.236)

If we interpret this as the amplitude for a particle created at time t1 at r1 to be destroyed

at time t2 at r2, we can check causality by considering space-like values for x2 � x1 (i.e.,
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(x2 � x1)2 < 0 in this metric) and choose a frame where t2 � t1 = 0. This gives, with

p := |p| and doing the angle integrals,

D(x2 � x1)|(t2=t1) =

Z
d3p

(2⇡)3
1

2Ep
eip·(r2�r1) = �

i

8⇡2r

Z 1

�1
dp p

eiprp
p2 +m2

. (1.237)

The last integral is a bit messy to do since it requires moving contours around so that they

follow the branch cuts of the integrand. Skipping the details, this procedure gives, for large

r, the answer

D(x2 � x1)|(t2=t1) ! e�mr in the limit r ! 1. (1.238)

This is also obtained, in the same limit, from the exact result which is in terms of a modified

Bessel function

D(x2 � x1)|(t2=t1) =
m

4⇡2r
K1(mr). (1.239)

Again we fail to achieve causality but in QFT there is a remedy namely to consider

instead the ”propagator of e↵ects” given by the commutator of two fields as follows

h0|[�(x2),�(x1)]|0i = h0|�(x2)�(x1)|0i � h0|�(x1)�(x2)|0i = D(x2 � x1)�D(x1 � x2).

(1.240)

The reason for considering the commutator is that for spatial separation of the two points

the two fields must have e↵ects that are independent of each other and hence it must be

possible to measure them simultaneously. As above, for spatial separations of the two

points we can go the frame where t2 = t1 and then the commutator becomes an ”equal

time” commutator which we know is zero from before. In fact, this could also be seen as

a consequence of the fact that D(r2 � r1) is independent of the direction of r2 � r1 as we

saw above.

Comment: Recall that, using the mode expansion of the quantum scalar field, we

computed previously the equal time commutator in full detail and found, with ⇧(x) = �̇(x),

[�(x2),⇧(x1)] = i�3(r2 � r1). (1.241)

Repeating this calculation for two fields or two canonical momenta we get

[�(x2),�(x1)] = [⇧(x2),⇧(x1)] = 0. (1.242)

Exercise: Verify that the last two commutators vanish.

Finally we have found an object that displays causality! What is actually going on here

is not that obvious in the case of a real scalar field. However, by turning to complex fields

it becomes clear that causality in QFT is a consequence of the presence of anti-particles.

In fact, in we consider

h0|[�(x2),�
†(x1)]|0i = h0|�(x2)�

†(x1)|0i � h0|�†(x1)�(x2)|0i, (1.243)

then the first term on the RHS creates a particle (using a†) with charge q at x1 and destroys

it (using a) at x2, while the second term does the opposite, namely creates (using b†) an
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anti-particle (creating �q = destroying q) at x2 and destroys it (using b to destroy �q i.e.,

create q) at x1. Therefore, the two terms in the commutator have the same e↵ect at the

two events x1 and x2 and cancel each other out for space-like separated events.

Let us now study this causal object to get a better understanding of it. We have

h0|[�(x2),�(x1)]|0i = D(x2�x1)�D(x1�x2) =

Z
d3p

(2⇡)3
1

2Ep
(e�ip·(x2�x1)�e�ip·(x1�x2))|p0=Ep

.

(1.244)

For t2 > t1 this can be written as

h0|[�(x2),�(x1)]|0i =

Z
d3p

(2⇡)3
1

2Ep
(e�ip·(x2�x1)|p0=Ep

� e�ip·(x2�x1)|p0=�Ep
), (1.245)

where the exponents are now ordered in the same way. Note that in the second term we

have defined p0 = �Ep, and to get the whole exponent in the form (x2 � x1) we have also

flipped the integration variable in this term by letting p ! �p.

The RHS above can now be written as an integral over p0 from �1 to 1 as follows

h0|[�(x2),�(x1)]|0i =

Z
d3p

(2⇡)3

Z 1

�1

dp0

2⇡i
(

�1

p2 �m2
)e�ip·(x2�x1). (1.246)

The reason this expression gives the above result is that for t2 > t1 we can create a closed

contour in the complex p0 plane by extending the real p0 axis with a half-circle in the lower

half-plane and let its radius tend to 1. Explicitly, we let p0 ! p0 + iy. This creates an

extra factor since e�i(t2�t1)p0 ! e(t2�t1)y e�i(t2�t1)p0 which goes to zero as y ! �1, i.e.,

as the radius of half-circle in the lower half-plane tends to infinity. In the upper plane

y ! +1 which means that the half-circle contribution only vanishes for t2 < t1. Having

constructed these closed contours we can then use the theory of residues which gives a non-

zero result if there are any simple poles inside the closed contour. Since the half-circles do

not contribute for the relations between t2 and t1 discussed above, the residue results are

equal to the integrals along the real axis of p0 that we want to compute.

To apply this idea to the p0 integral above we must first locate the simple poles. This

is easily done using the fact that

1

p2 �m2
=

1

2Ep

✓
1

p0 � Ep
�

1

p0 + Ep

◆
. (1.247)

Thus the poles are located at p0 = ±Ep on the real p0 axis which needs some care.

The trick is to move the poles o↵ the real axis, i.e., we add a small imaginary part �i✏

to each pole in such a way that the poles end up below the real axis. Note that for the

closed contour in the lower half-plane the integration direction is opposite to the one used

in the residue theorem which is the reason for the factor (�1) in the integrand above. This

relocation of the poles is done by

1

p2 �m2
!

1

2Ep

✓
1

p0 � Ep + i✏
�

1

p0 + Ep + i✏

◆
. (1.248)
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Then we compute the result by residues and after that let ✏ ! 0. The result is the one

quoted above which is the retarded propagator DR(x2 � x1). Here causality is due to

the fact that both the poles are in the lower half-plane which gives a non-zero result only

for t2 > t1. Note that, as already mentioned above, the closed contour trick can be used

in the upper half-plane only when t2 < t1. In this case, with both poles below the real

axis, the residue vanishes and so does the p0 integral, in accord with the properties of the

retarded propagator.

Brief review of the residue theorem

We will use the residue theorem several times in this course so let us review it here. The

residue theorem is applicable to closed paths integrals in the complex plane where the

integrand is a holomorphic function (i.e., depends on z but not z̄ and has no branch cuts).

If the simple poles inside the closed contour C are made explicit the theorem reads

⌃i

I

C

dz
f(z)

z � zi
= 2⇡i⌃i f(zi). (1.249)

The contour is in the counterclockwise direction. Expanding the whole holomorphic (=an-

alytic, but often called meromorphic if it includes the poles) function F (z) in the integrand

in a Laurent series F (z) = ⌃1
n=�1an (z � zi)n around each pole gives the residue theorem

in terms of the sum of the coe�cients a�1 for each pole.

To get some feeling for this theorem consider first the trivial integral over an angle ✓

from ✓ = 0 to ✓ = 2⇡:
R 2⇡
0 d✓ = 2⇡. For a circle with radius r this integral gives instead

2⇡r. Using polar coordinates (x, y) = (r cos ✓, r sin ✓) we can form the complex coordinate

z = x + iy = r(cos ✓ + i sin ✓) = rei✓. Integrating
H
dz around a circle with fixed r gives

then
H
r
dz = ri

R 2⇡
0 d✓ei✓ = 0. However, if the integrand is 1/z we get

H
dz

z
= i

R 2⇡
0 d✓ = 2⇡i

which now is independent of the radius of the circle! This indicates that if we subtract

this result for two di↵erent radii the area between the circles gives no contribution to the

integral. In fact, this is true for an area of any shape that does not contain any 1/z poles.

This follows since an integrand with any other power of z than �1 will always give a zero

result. E.g.,
H

dz

z2
= �

H
dz@z(

1
z
) = 0 since the integrand is a total derivative in z.

Returning to the retarded propagator DR(x2 � x1) we note that it can be expressed

in terms of the step function ⇥(x) as follows

DR(x2�x1) = ⇥(t2� t1)h0|[�(x2),�(x1]|0i = ⇥(t2� t1)(D(x2�x1)�D(x1�x2)). (1.250)

We can now show that DR(x2 � x1) is a Green’s function:

(⇤2 +m2)DR(x2 � x1) = �i�4(x2 � x1). (1.251)

To check this we compute

(⇤2 +m2)⇥(t2 � t1)h0|[�(x2),�(x1]|0i = (@2
t2
⇥(t2 � t1))h0|[�(x2),�(x1]|0i

+2(@t2⇥(t2 � t1))h0|[�̇(x2),�(x1]|0i+⇥(t2 � t1)h0|[(⇤2 +m2)�(x2),�(x1]|0i. (1.252)
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While the last term vanishes we have to deal with the first two terms. They can be simplified

by using the relation between a step function and a delta function, namely @x⇥(x) = �(x):

the first term on the RHS above then contains a factor @t2�(t2 � t1)) and the second one a

factor �(t2 � t1)).

Finally, @t2�(t2� t1) is not a nice object but fortunately it can be simplified by making

use of the fact that the equal time commutator of two scalar fields vanishes. This fact can

be expressed as

�(t2 � t1)h0|[�(x2),�(x1]|0i = 0. (1.253)

If we hit this equation with a t2 derivative we find that the troublesome term becomes

(@t2�(t2 � t1))h0|[�(x2),�(x1]|0i = ��(t2 � t1)h0|[�̇(x2),�(x1]|0i, (1.254)

which thus combines with the middle term above giving the final result (recall that �̇ = ⇧)

(⇤2 +m2)DR(x2 � x1) = �(t2 � t1)h0|[⇧(x2),�(x1]|0i = �i�4(x2 � x1). (1.255)

But Green’s functions can be computed by Fourier transformation:

G(x2 � x1) =

Z
d4p

(2⇡)4
e�ip·(x2�x1)G̃(p). (1.256)

The defining equation for the Green’s function then immediately implies

(⇤2 +m2)G(x2 � x1) = �i�4(x2 � x1) ) G̃(p) =
i

p2 �m2
, (1.257)

which hence means that

G(x2 � x1) =

Z
d4p

(2⇡)4
i

p2 �m2
e�ip·(x2�x1). (1.258)

Is this the retarded Green’s function? Yes and no! It can be any of four possible

Green’s functions depending on how the poles are located relative the real p0-axis when

computing the p0 integral. In fact, at this point it is up to us to define where the poles are

and thus which Green’s function we want to obtain. We can do what we did above, namely

to shift both poles below the real axis and get the retarded Green’s function. Shifting them

above the real axis gives instead the so called advanced Green’s function.

The amazing fact discovered by Feynman is that the most useful Green’s function, at

least in relativistic QFT, is obtained if we shift the pole at p0 = �Ep above the real axis and

the pole at p0 = +Ep below the real axis! This leads to the Feynman propagator. (The

fourth possibility does not seem be of any interest.) It is a nice feature of this propagator

that this particular way of moving the poles o↵ the real axis is generated by the following

insertion of i✏:

G̃(p) =
i

p2 �m2
! G̃(p) =

i

p2 �m2 + i✏
. (1.259)

The locations of the poles are then: p0 = ±

q
(E2

p � i✏) ⇡ ±Ep(1�
i✏

2Ep
) = ±Ep ⌥

i

2✏.
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Comment: This course does not contain any material on the very important subject

of path integrals. But there is one interesting aspect that is closely connected to the pole

structure of the Feynman propagator and thus might be a suitable comment to make here.

The Feynman path integral is mathematically a very complicated object since it in-

volves integrating over spaces of functions. This is usually written as

Z /

Z
D� e

i

}S[�], (1.260)

where Z is called the partition function and S[�] is the action functional for some classical

field here denoted �. This expression for Z can either be used as a generating function for

the Feynman rules which is a very e�cient way to derive them, or one can actually try to

compute it somehow. One way to make sense of it is to perform a Wick rotation (which

will later play a very important role also in this course), that is, turning time imaginary

by the replacement t ! �it.

Performing the Wick rotation t ! �it in the path integral gives the exponent

i

Z
dt

Z
d3r

1

2
(�̇2

� (r�)2 �m2�2) ! i

Z
(�idt)

Z
d3r

1

2
(��̇2

� (r�)2 �m2�2)

= �

Z
dt

Z
d3r

1

2
(�̇2 + (r�)2 +m2�2) = �

1

2

Z
d4x(�(x) (�⇤eucl +m2)�(x))

= �
1

2

Z
d4p�̃(p) (p2 +m2)�̃(�p), (1.261)

where in the last step we have performed a Fourier transformation to Euclidean momentum

space which implies ⇤eucl ! �p2 which is now a Euclidean sum of terms.

The Wick rotation in time used here can be related to a Wick rotation in p0. This

latter one is defined by the closed contour obtained by rotating the real p0 axis in the op-

posite direction to the time rotation, i.e., p0 ! +ip0, which is possible since this rotation

will NOT pass over any of the two Feynman poles in the p0 plane.

There are two nice properties emerging here:

1. The above expression for the integrand is negative definite since p2 + m2 is positive

definite in Euclidean signature.

2. Since this is the exponent in the partition function Z it has become a infinite dimensional

Gaussian integral like
R
dx e�x

2
and can thus be computed by using the mode expansions

and turning it into an integral over the expansion coe�cients.

For Hawking and his collaborators the Euclidean path integral was a key tool and in some

sense was defined to be the starting point for physics instead of the Lorentz invariant

formulation we are used to. It has important applications, e.g, in describing tunneling

phenomena in terms of instantons.

Time ordering: Returning to the Feynman propagator we now want to introduce the

concept of time ordering which will play an key role in the development of perturbation

theory later.
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The Feynman propagator derived above can be written

DF (x2 � x1) =

(
+D(x2 � x1), for t2 > t1,

+D(x1 � x2), for t2 < t1,

= ⇥(t2 � t1)h0|�(x2)�(x1)|0i+⇥(t1 � t2)h0|�(x1)�(x2)|0i, (1.262)

where the plus sign arises because the contour in the upper half-plane emerges with the

correct orientation. This result defines time ordering which is denoted by a capital T :

DF (x2 � x1) := h0|T (�(x2)�(x1))|0i, (1.263)

and is a prescription telling us to sum over all possible time ordered terms with later

operators to the left of earlier ones (here we have only two � fields but it can involve any

number of operators of di↵erent kinds as we will see later).

Meaning of a quantum field? Classical bosonic, i.e., integer spin, fields like Aµ in

EM and by analogy scalar fields � are in principle measurable quantities. This is not the

case for the quantised versions of these fields since they are operators. Therefore one should

evaluate them on specific states and compute their matrix expectation values to have a

change to interpret them. Doing this we could try to compare the results to ordinary QM

where we probably understand them better. So let us consider a real scalar quantum field

at t = 0 for simplicity. Then the mode expansion implies

�(r)|0i =

Z
d3p

(2⇡)3
1

2Ep
e�ip·r

|pi, (1.264)

and by taking the hermitian conjugate of this result we find that

h0|�(r)|pi = e�ip·r. (1.265)

Some feeling for the quantum � is then o↵ered by the comparison to similar objects in QM:

|ri =

Z
d3p

(2⇡)3
e�ip·r

|pi, (1.266)

and

hr|pi = e�ip·r. (1.267)

Causality? Finally, we must return to the issue of causality. The important point here

is that the Feynman propagator does not respect causality as the retarded one DR(x2�x1)

does. Therefore causality must checked again at some later point in the development of

perturbation theory. In Weinberg, Vol. 1, 145 this is done by considering the Hamiltonian

density H and the behaviour of the following commutator at space-like distances,

[H(x2),H(x1)] = 0, for (x2 � x1)
2 < 0. (1.268)

This condition can, in fact, be verified and thus causality established despite the fact that

the formalism is based on Hamiltonians and therefore does not display causality in any

obvious way.
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