
1.3 Group theory 1: The classical matrix groups

Consider the set of all complex N ⇥N matrices U satisfying the unitarity condition

U † = U�1, or U †U = UU † = 1, (1.5)

leaving the scalar product in C
N invariant: If � 2 C

N and �0 = U� then �0†�0 = �†�. The

unitarity property survives matrix multiplication which means that if two matrices U1 and

U2 are unitary so is the product U3 = U1U2 which hence also belongs to this matrix set:

U †
3U3 = (U1U2)

†U1U2 = U †
2U

†
1U1U2 = 1. (1.6)

Note that the unit matrix 1 is in this set of matrices and that every matrix has an inverse,

which is actually part of the assumption above (since U † = U�1 implies that detU = ei↵

with ↵ 2 R). We may also add the requirement that the matrices have unit determinant

which is also preserved by matrix multiplication since det (U1U2) = (det U1)(det U2). This

is a subset of the previous one without the unit determinant condition.

If we consider all matrices in either one of these two sets the following properties are

trivially satisfied:

1. The set is closed under multiplication (here matrix multiplication)

2. The multiplication is associative (as matrix multiplication always is)

3. There is a unit (here the unit matrix 1)

4. Every element in the set has an inverse (true here since we consider only matrices

satisfying U † = U�1, i.e., matrices with non-zero determinant

Viewing these properties instead as axioms they define a group, often denoted G and

members of the set are called elements, which in the case above is called the unitary

group:

U(N), (1.7)

realised in this discussion in terms of complex N ⇥N matrices. When the condition that

the matrices have unit determinant det U = 1 is added the group is called special unitary:

SU(N). (1.8)

The standard model of elementary particles is based on three such groups: U(1), SU(2)

and SU(3). The group U(1) is the group of phases, i.e., multiplication by ei↵ where ↵ is

a (real) parameter (angle), and is abelian. The other two groups are non-abelian, i.e.,

g1g2 6= g2g1 for some g1, g2 2 G. Any U 2 SU(2) can be written in terms of a, b 2 C as

U 2 SU(2) : U =

 
a b

�b⇤ a⇤

!
, where |a|2 + |b|2 = 1, (1.9)

which is easily checked. Two general such matrices do not commute and the group is

therefore non-abelian. The set of matrices in this group can be parametrised by the points
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on the unit three-sphere S3 since |a|2+|b|2 = 1 which, if written in real variables a = x1+ix2
and b = x3+ ix4, becomes x21+x22+x23+x24 = 1, i.e., the equation for S3 embedded in R

4.

While U(1) and SU(2) can be viewed in this way in terms of simple geometries S1

(unit complex numbers) and S3 (unit quaternions)3 SU(3) and higher SU(N) groups are

much more complicated as manifolds and do not correspond to anything with other names.

These notions can be carried over to real matrices leading to the orthogonal groups

O(N) or SO(N). (1.10)

Among the groups called classical there is just one other case, the symplectic groups.

One way to define matrix groups is by looking for matrices preserving some special matrices

numerically. One example is the unit matrix which then leads to orthogonal groups (g1gT =

1 ) g 2 O(N)) while invariance of the antisymmetric 2N ⇥ 2N matrix

C =

 
0 1

�1 0

!
, (1.11)

defines the symplectic groups4

Sp(2N). (1.12)

Comments:

1. The complete classification of all finite-dimensional Lie groups (i.e., continuous of the

kind discussed above) is known as the Cartan classification and contains in addition to the

classical groups above, i.e., the unitary (denoted An by Cartan), orthogonal (denoted Bn

or Dn), and symplectic (denoted Cn), also the exceptional ones G2, F4, E6, E7, E8. These

latter ones have, however, no simple definition in terms of matrices similar to the one used

above. The index n (and the indices appearing on the exceptional groups) is the rank of the

group related to the maximal number of matrices that can be diagonalised simultaneously.

The classes An contain also the groups GL(N) and SL(N) which are general matrices with

non-zero or unit determinant, respectively.

2. There are also other important groups like finite ones with a finite number of group

elements, and those with a discrete set of elements which is infinite in number (see courses

in Group theory and in String theory).

3. Other important Lie groups in physics have infinite dimension. Examples of such are

Virasoro and Kac-Moody appearing in two-dimensional conformal field theory (CFT2) used,

e.g., in string theory and in the context of phase transitions in condensed matter systems.

4. There is a very important (also for QFT) distinction between compact groups (e.g.,

U(N), SU(N), SO(N)) and non-compact ones (e.g., SO(1, 3), SU(1, 1), Sp(2N), SL(N))

discussed further in ”Group theory 2” on Lie algebras and representations.

3There is a third case, the octonions, for which a unit octonion can be shown to be the same as the

seven-dimensional sphere, S7. This manifold is, however, not a group manifold but does nevertheless share

some properties with group manifolds as, e.g., being parallelisable. S7 plays a key role in string/M theory.
4Note that some authors call these groups Sp(N).
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