
1.4 Group theory 2: Lie algebras and representations

1.4.1 Lie algebras: the compact case

Finite groups, like the symmetry group of a cube, have a finite number of group elements

and are characterised by the multiplication table of the group elements. For continuous

groups, i.e., Lie groups, such a table is not meaningful. Instead one turns to the Lie

algebra associated to the Lie group, which is a local property of the Lie group. Adding

information about the global, or topological, properties of the Lie group manifold one has

a full description of the group. The standard example is the Lie algebras so(3) and su(2)

which are the same (i.e., isomorphic) while their groups SO(3) and SU(2) are locally the

same but topologically di↵erent: SU(2) = S3 and SO(3) = RP 3 which is the set of all lines

through the center of the three-sphere S3. This relation is written SO(3) = SU(2)/Z2.

We will in general denote groups with upper case and Lie algebras with lower case letters.

The Lie algebra can be extracted from a Lie group G by writing its elements g as the

exponential of a linear combination of a new set of matrices, the so called generators T i.

That is

g 2 G : g := ei↵
i
T

i
, i = 1, 2, ..., d, (1.13)

with the exponential of a matrix defined by its power series expansion. Here d is the

dimension of the group or the Lie algebra, and one should note that the parameters,

or ”angles”, ↵i are real numbers. The generators can be shown to satisfy commutation

relations, known as the Lie algebra, of the form

[T i, T j ] = if ij
kT

k, (1.14)

where the constants f ij
k are called the structure constants. Some well-known examples

will appear below.5

The following relations will be very useful: If M and A are matrices then

M := eA =) det M = eTr A, M † = (eA)† = eA
†
. (1.15)

Defining SU(N) as the set of all N ⇥N complex unitary matrices with unit determinant

and SO(N) as the set of all N ⇥N real orthogonal matrices we find, with the imaginary

unit i in the exponent as above6, the following conditions on the generators

SU(N) : (T i)† = T i, T r T i = 0,

5The generators span a vector space which means that the structure constants depend on which linear

combinations of the generators are considered independent. Therefore it is quite tricky to find out which

Lie algebra is actually represented by a given set of structure constants. This is solved by using Dynkin

diagrams (see courses on group theory and Lie algebras).
6The definition of the generators with an i in the exponent is particularly useful in quantum mechanics

since it leads to hermitian generators which have real eigenvalues, a property required by observables in

quantum mechanics. However, sometimes it is instead useful to work with definitions without the i in

the exponent, e.g., in purely geometrical considerations. Note that without the i in the exponent the Lie

algebra is also written without the i on the right hand side.
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SO(N) : (T i)† = T i, T r T i = 0, (1.16)

which in the latter case means that the generators are anti-symmetric and purely imaginary

since g is a real matrix in this case. The generators so defined are in the fundamental, or

defining, representation of the group or its Lie algebra. Other representations, that is other

sets of matrices, satisfying a specific Lie algebra are discussed below. All possible matrix

representations7 of the Lie algebras classified by Cartan are known. E.g., in the case of

su(2), or equivalently so(3), we know from QM that these correspond to all integer and

half-integer spins j with matrices of dimension (2j + 1) ⇥ (2j + 1). Thus the spin 1/2

representation is in terms of 2 ⇥ 2 Pauli matrices, acting on a two-dimensional complex

vector space of wave functions denoted �↵ with ↵ = 1, 2 for the two spin states up and

down.

For su(2) the above conditions on the generators translate into the facts that i = 1, 2, 3

and that the generators T i can be related to the Pauli matrices �i:

�1 =

 
0 1

1 0

!
, �2 =

 
0 �i

i 0

!
, �3 =

 
1 0

0 �1

!
, (1.17)

which span the space of 2 by 2 complex hermitian traceless matrices and satisfy

{�i,�j} = 2�ij , [�i,�j ] = 2i✏ijk�k. (1.18)

It is convenient to define

T i =
1

2
�i, (1.19)

so that the generators satisfy the Lie algebra of SU(2), i.e.,

su(2) := Lie(SU(2)) : [T i, T j ] = i✏ijkT k. (1.20)

Note that the above anti-commutation relations are a property of the Pauli matrices and

not a general feature related to the Lie algebra.

For su(3) the eight corresponding 3 ⇥ 3 matrices can be found in Problem 15.1 in

Peskin and Schroeder. They are a factor of 1
2 times the so called Gell-Mann matrices often

denoted �i. Note that the Pauli matrices appear as 2⇥ 2 submatrices in the first three of

the Gell-Mann matrices which therefore satisfy the same algebra as su(2): su(2) is thus a

subalgebra of su(3).

The su(3) generators in Problem 15.1 satisfy [T i, T j ] = if ij
kT k where the structure

constants f ij
k are rather complicated. For su(2), on the other hand,

su(2) : f ij
k = ✏ijk, (1.21)

while for most other Lie algebras, including su(3), there is no such easy way to describe

the structure constants.
7These are matrices of finite size.
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For a general SU(N) the number of generators, i.e., the dimension of the group or

its Lie algebra, is easily obtained: The number of imaginary antisymmetric matrices are
1
2N(N � 1) and the number of real symmetric and traceless ones is 1

2N(N + 1) � 1. For

SU(N) this gives N2 � 1 while for SO(N) we find 1
2N(N � 1).

Let us now consider the group SO(3). Its generators are real antisymmetric 3 ⇥ 3

matrices8 multiplied by i. There are exactly three such matrices which can be written

(T i)jk = �i✏ijk i.e. T 1 = �i

0

B@
0 0 0

0 0 1

0 �1 0

1

CA , etc, (1.22)

where ✏ijk is totally antisymmetric and ✏123 = 1. These matrices define the vector repre-

sentation of the Lie algebra so(3) and even of the group SO(3). The generators of SO(3)

given above satisfy the Lie algebra

so(3) := Lie(SO(3)) : [T i, T j ] = i✏ijkT k, (1.23)

which is exactly the same as that for su(2) found above. This follows either by explicitly

computing the commutators or by using the epsilon relation (the sum over k is implied)

✏ijk✏mnk = �im�jn � �in�jm. (1.24)

Then

([T i, T j ])mn = (T i)mp(T
j)pn � (i $ j) = (�i)2(✏imp✏jpn � (i $ j))

= �(�i)2((�ij�mn � �in�jm)� (�ji�mn � �jn�im)) = �im�jn � �in�jm, (1.25)

which is exactly what we get when evaluating the right hand side of the Lie algebra

i✏ijk(T k)mn = i(�i)✏ijk✏kmn = �im�jn � �in�jm. (1.26)

The above way of writing the so(3) generators in terms of the epsilon symbol is clearly

unique to three dimensions. There is, however, a di↵erent way to express these generators

that directly generalises to the rotation group SO(N) in any dimension N , namely

(T ij)kl = �2i�ij
kl
:= �i(�i

k
�j
l
� �i

l
�j
k
), (1.27)

which provides one generator for the rotation in each possible plane given by (ij) in R
N .

For N = 3 one finds that these coincide, i.e., T 1 = T 23 etc. The so(N) Lie algebra reads

then

[T ij , T kl] = �i(�jkT il + �ilT jk � �jlT ik � �ikT jl). (1.28)

8Note that these matrices are automatically traceless which means that the group O(N) has the same

set of generators. The di↵erence between O(N) and SO(N) is thus related to discrete transformations

only contrary to the situation for unitary groups where the determinant condition eliminates one generator,

namely the U(1) part of the group U(N).
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Above we saw that both the 2 by 2 Pauli matrices (multiplied by a factor 1
2) and

the 3 by 3 matrices (T i)jk = �i✏ijk satisfy the same Lie algebra, namely su(2) ⇡ so(3).

The spin 1/2 representation (the Pauli matrices) are fundamental since any other spin j

representation can be constructed from them. An example is provided by the well-known

(from QM) formula 1
2 ⌦ 1

2 = 1 � 0 which tells us that the tensor product of two spin 1/2

representations gives one spin 1 and one spin 0 representation. The result of the tensor

product is therefore called reducible since it can be split into two smaller representations

1� 0. Spin j representations, on the other hand, cannot be split into smaller ones and are

thus called irreducible often referred to as irreps (irreducible representations). In fact, if

we consider two-component wave functions �↵ to describe spin 1/2 particles then one can

make the above tensor product explicit by writing

1
2 ⌦ 1

2 = 1� 0 $ �↵�� = 1
2✏↵�(�̄�) +

1
2�

i

↵�
(�̄�i�), (1.29)

where �̄� := �̄↵�↵ with �̄↵ := ✏↵��� and similarly for �̄�i� = �̄↵(�i)↵��� . Note that the

Pauli matrices with both indices down are defined by

�i
↵�

:= ✏���
i

↵

� , (1.30)

and are easily seen to be symmetric matrices. These together with the antisymmetric

matrix ✏↵� thus span the space of 2 by 2 matrices.

In the above tensor product it is important that the expansion coe�cients are numer-

ically invariant tensors. That the matrix ✏↵� is numerically invariant under su(2) follows

from

g 2 SU(2) ) g↵
�g�

�✏�� = (det g) ✏↵� = ✏↵� , (1.31)

using first the definition of the determinant and then the fact that any g 2 SU(2) has unit

determinant 9. That also the Pauli matrices are numerically invariant is a bit more tricky

to show but is done below.

We now show that the Pauli matrices are numerically invariant under rotations, not

just covariant tensors. By considering their index structure (�i)↵� , i.e., one vector index i

and two spinor indices, a lower ↵ and a upper �, and then by ”rotating” all three we can

prove that the e↵ect of all three rotation matrices cancel out completely and we get back

just the Pauli matrices. We consider here the rather simple case of rotating the two Pauli

matrices (�1)↵� and (�2)↵� around the z-axis. A general tensor X with the same index

structure transforms as (Xi)↵� ! ((Xi)↵�)0 := Ri
j(✓)(R↵

�(✓)(Xj)��(R
�1
�

�(✓)). Thus if

we consider the special case (Xi)↵� = (�i)↵� we have

(�i)↵
� ! ((�i)↵

�)0 := Ri
j(✓)(R↵

�(✓)(�j)�
�(R�1

�

�(✓)), (1.32)

so the computation we need to do is to evaluate the right hand side. Note that we here

also include the third component of the Pauli matrices. For rotations around the z-axis

the rotation matrices read

R(✓) = ei✓T
3
, (1.33)

9Compare to how the flat space-time metric behaves under Lorentz transformations.
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where T 3 is one of the generators satisfying the so(3) algebra above [T i, T j ] = i✏ijkT k.

Both the spin 1 and spin 1/2 representations are given above and we recall that

spin 1 : (T 3)ij = �i✏3ij = �i

0

@
0 1 0
�1 0 0
0 0 0

1

A , spin 1/2 : (T 3)↵
� =

1

2
(�3)↵

� . (1.34)

The rotation matrices then become in the vector representation

spin 1 : (R(✓))ij = exp ✓

✓
0 1 0
�1 0 0
0 0 0

◆
=

0

@
cos ✓ sin ✓ 0
� sin ✓ cos ✓ 0

0 0 1

1

A , (1.35)

and in the spinor representation

spin 1/2 : (R(✓))↵
� = exp (i ✓2

⇣
1 0
0 �1

⌘
) = cos(

✓

2
)��↵ + i(�3)↵

� sin(
✓

2
). (1.36)

Applying these transformations to the Pauli matrices gives

spin 1 : (R(✓))ij �
j =

0

@
cos ✓ sin ✓ 0
� sin ✓ cos ✓ 0

0 0 1

1

A

0

@
�1

�2

�3

1

A =

0

@
cos ✓�1 + sin ✓�2

� sin ✓�1 + cos ✓�2

�3

1

A , (1.37)

which we now should compare to

R↵
�(✓)(�i)�

�(R�1
�

�(✓) =
⇣
exp (i ✓2

⇣
1 0
0 �1

⌘
)�i exp (�i ✓2

⇣
1 0
0 �1

⌘
)
⌘

↵

� . (1.38)

For �3 we thus we see that since �3 commutes with itself the result is just �3 since the two

exponential factors cancel each other. For �1 and �2, on the other hand, they anticommute

with �3 so flipping the order of the matrices (expand the exp in a power series) gives

R↵
�(✓)(�1)�

�(R�1
�

�(✓) = (exp i ✓2

⇣
1 0
0 �1

⌘
�1 exp (�i ✓2

⇣
1 0
0 �1

⌘
))↵

� = (exp i✓
⇣

1 0
0 �1

⌘
�1)↵

� ,

(1.39)

which thus gives

R(✓)(�1)R�1(✓) = (cos ✓ + i�3 sin ✓)�1 = cos ✓�1 � sin ✓�2, (1.40)

while for �2 we get

R(✓)(�2)R�1(✓) = (cos ✓ + i�3 sin ✓)�2 = cos ✓�2 + sin ✓�1. (1.41)

From these results we conclude that

R(✓)(�i)R�1(✓) = (R�1)ij (�
j), (1.42)

and hence that

(�i)↵
� ! ((�i)↵

�)0 := Ri
j(✓)(R↵

�(✓)(�j)�
�R�1

�

�(✓)) = (�i)↵
� , (1.43)

as expected. This proof will be done in the course in complete generality using the Lie

algebra instead which simplifies it a lot (see below).
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1.4.2 Lie algebras: the non-compact case

In four-dimensional space-time we need to implement Lorentz symmetry, i.e., SO(1, 3).

This Lie algebra can be obtained as follows. The SO(3) generators above can be rewritten

in a way that is valid in any dimension by setting T 1 := T 23 etc, that is we index the

generators by the plane (for T 1 the (23)-plane) in which they generate a rotation:

(T ij)mn = �2i�ijmn : (T 12)mn = �i

0

@
0 1 0
�1 0 0
0 0 0

1

A , etc. (1.44)

This can then be done in any dimension and the definition (T ij)mn = �2i�ijmn is true for

any dimension d. However, when writing the SO(N) Lie algebra this way we find

[T ij , T kl] = �i(�jkT il + .....) (1.45)

where the three terms not written are such that the anti-symmetry in the two pairs of

indices ij and kl are implemented. This can be checked in three dimensions by considering

one specific example: using e.g. the commutator between T 1 = T 23 and T 2 = T 31 must

give iT 3 = iT 12 = �iT 21 using either form of the Lie algebra.

For space-time signature (+,�,�,�) we use the new T ij form of the SO(3) algebra

and let ��jk be the space-space part of ⌘µ⌫ (denoted gµ⌫ in Peskin and Schroeder) and

hence we conclude that

Lie(SO(1, 3) : [Jµ⌫ , J⇢�] = i(⌘⌫⇢Jµ� + .....), (1.46)

where we call the Lorentz generators Jµ⌫ (instead of Tµ⌫) and explicitly we have shown

that the vector representation

(Jµ⌫)⇢� = 2i�µ⌫⇢� := i(�µ⇢ �
⌫

� � �µ��
⌫

⇢). (1.47)

satisfy the Lorentz algebra given above.

In this representation we can explicitly see that the Minkowski metric is an invariant

(i.e., numerically invariant) tensor under SO(1, 3). A rotation with finite parameters !µ⌫

is defined as acting with the group element10

g 2 SO(1, 3) : g = e�
i
2!µ⌫J

µ⌫
(1.48)

which in the vector representation reads

g 2 SO(1, 3) : g⇢
� = e�

i
2!µ⌫(Jµ⌫)⇢� = e!⇢

�
. (1.49)

Acting on a vector Vµ (the same is true for V µ) this becomes

gµ
⌫V⌫ = Vµ + !µ

⌫V⌫ + ... (1.50)

10The factor 1
2 in the exponent is needed since the sum is over two indices.
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Defining the infinitesimal Lorentz transformation (i.e., small !s) by the variation

�!Vµ := (gµ
⌫V⌫ � Vµ)|O(!) = !µ

⌫V⌫ , (1.51)

we see that !01 = �!10 := � gives a boost in the negative x direction

��V0 = ��V1, ��V1 = ��V0, (1.52)

while for V µ it would be in the positive x direction. Note that this way V 0V0 + V 1V1 is

invariant as it must.

We can now verify that also the Minkowski metric is invariant although it is a tensor

�(⌘µ⌫) := !µ
⇢⌘⇢⌫ + !⌫

⇢⌘µ⇢ = !µ⌫ + !⌫µ = 0. (1.53)

Demanding invariance of a tensor like this is, in fact, another way to define the Lie algebra

in question. Similar to the rotation invariance of Pauli matrices above the Dirac matrices

(�µ)ab are Lorentz invariant.

Comments:

1. We saw above that the Lie algebras of SU(2) and SO(3) are identical, i.e., isomorphic.

This happens only in a very small number of cases and only for groups with small dimension.

2. On the other hand, that these two Lie algebras are the same shows that the Pauli

matrices and the epsilon tensor furnish two inequivalent representations, of dimension 2

and 3, respectively, of one and the same Lie algebra. There is an infinite number of finite-

dimensional matrix representations of any of the Lie algebras in the Cartan classification.

3. These two representations are both unitary.

4. Another case is Lie(SO(1, 3)) = Lie(SL(2,C)) which is related to the fact that Weyl

spinors  L and  R are inequivalent two-dimensional complex representations of the Lie

algebra of the Lorentz group. SL(2,C) is the group of all two by two complex matrices

with unit determinant. In the Cartan classification its Lie algebra belongs to the class

denoted A2. In the case of Lie(SO(1, 3)) none of the infinite set of finite-dimensional

representations is unitary and are thus irrelevant in quantum mechanics and QFT. The

Lorentz group is non-compact and can thus only be implemented unitarily on infinite-

dimensional vector spaces, i.e. on Hilbert spaces, a well-known theorem in mathematics.
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