
1.5 Group theory 3: Yang-Mills theory

As we have seen for both complex scalar and Dirac spinor fields, since they are complex

valued they can carry a charge related to an abelian gauge field, a Maxwell field which

interact with them through the covariant derivative. In the Lagrangian this gauge field is

represented by its own kinetic term L(Aµ) = �1
4Fµ⌫Fµ⌫ . In the Standard Model such a

Maxwell field appears before the Higgs e↵ect/symmetry breaking and its charge is called

hypercharge. The EM we study in this course on QFT and in other courses arises after

the Higgs e↵ect/symmetry breaking as a combination of the hypercharge field and another

field.

The most e�cient way to obtain the Maxwell field strength is to consider the covariant

derivative Dµ = @µ � ieAµ acting on a complex field. Then the commutator of two such

derivatives is also a covariant object. Acting on a complex scalar field � we get

[Dµ, D⌫ ]� = ((@µ � ieAµ)(@⌫ � ieA⌫)� (@⌫ � ieA⌫)(@µ � ieAµ))�

= ((@µ@⌫ � @⌫@µ)� ie(@µA⌫ � @⌫Aµ �Aµ@⌫ �A⌫@µ)� e2(AµA⌫ �A⌫Aµ))�.

(1.54)

In this result we find, however, that the terms with two derivatives cancel and the terms

with two gauge fields also cancel since Aµ is here just the ordinary Maxwell potential. The

remaining terms with one gauge field and one derivative can be simplified to

[Dµ, D⌫ ]� = �ie(@µA⌫ � @⌫Aµ +Aµ@⌫ �A⌫@µ)� = �ieFµ⌫� (1.55)

where

Fµ⌫ := @µA⌫ � @⌫Aµ (1.56)

is the standard Maxwell field strength. Note that in the middle expression in (1.55) the

derivatives in the first two terms act on everything on their right, i.e., including the field �

while in the last expression the derivatives in Fµ⌫ do not act on � just on the gauge field

Aµ.

We will now repeat this for a gauge theory which involves non-abelian gauge sym-

metries. Note that exactly this calculation can also be carried out in the case of general

relativity and there the result is the Riemann tensor. The Standard Model contains two

such gauge theories: QCD using the gauge group SU(3) and the weak interactions using

SU(2). In the latter case we can see this by noting that if we make the thought experiment

of turning o↵ the electric charge of the proton then its properties (mass, spin etc) become

identical to those of the neutron. This means that in constructing a field theory for the

(p, n) system it should be invariant if we ”rotate” one of these Dirac fields into the other

by a 2⇥2 unitary matrix belonging to the group SU(2). Thus we should put the two Dirac

spinors for these two fermions into a two-dimensional complex representation of SU(2):

 =

 
 p

 n

!
. (1.57)
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In the Standard Model this construction is instead realised on the constituents of the

proton and neutron, i.e., the u and d quarks and furthermore only on their left-handed

parts (which is possible since the quarks are massless before symmetry breaking). Thus,

in the Standard Model we have particles like

 L(quark) =

 
uL
dL

!
,  L(lepton) =

 
⌫L
eL

!
, (1.58)

where we have simplified the notation by writing uL instead of  L(u) etc. The correspond-

ing right-handed spinors transform as scalars under this SU(2).

The gauge field in this case is then introduced in the usual fashion

Dµ := @µ � i

2
g�iAi

µ = @µ � igT iAi

µ = @µ � igAµ , (1.59)

where g is the coupling constant and T i := 1
2�

i the generators of the Lie algebra su(2)

[T i, T j ] = i✏ijkT k (1.60)

expressed as usual in terms of the Pauli matrices satisfying [�i,�j ] = 2i✏ijk�k. In the

covariant derivative each of the three generators is associated with a (real valued) vector

potential denoted Ai
µ. In the last form of the covariant derivative we have defined the very

useful matrix valued vector potential Aµ := T iAi
µ. Note that here the coupling constant g

will follow the gauge field Ai
µ while the generators T i will only depend on the representation

of the field acted on by Dµ and the matrix valued Aµ.

As we will now show the above covariant derivative is tied to the gauge transformation

 !  0 = e
i
2↵

i
�
i
 := U , (1.61)

which is an SU(2) gauge transformation since U := e
i
2↵

i
�
i 2 SU(2) with parameters ↵i(x).

Recall that 1
2�

i satisfy the Lie algebra of SU(2). Demanding gauge invariance (that is

covariance under local transformations with ↵i = ↵i(x)) we find that we need the gauge

field variation to read

�Ai

µ =
1

g
Dµ↵

i =
1

g
@µ↵

i + ✏ijkAj

µ↵
k. (1.62)

This will then lead to a field strength

Fµ⌫ := @µA⌫ � @⌫Aµ � ig[Aµ, A⌫ ] (1.63)

or

F i

µ⌫ := @µA
i

⌫ � @⌫A
i

µ + g✏ijkAj

µA
k

⌫ . (1.64)

The above features of non-abelian gauge theory, i.e., Yang-Mills theory, will now be

shown to follow as usual from gauge invariance which here reads

 !  0 = e
i
2↵

i
�
i
 = U =) Dµ ! (Dµ )

0 = e
i
2↵

i
�
i
Dµ = UDµ , (1.65)
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where, using the matrix valued notation introduced above,

(Dµ )
0 := @µ(U )� igA0

µU . (1.66)

Covariance then implies

(Dµ )
0 := @µ(U )� igA0

µU = UDµ = U(@µ � igAµ) . (1.67)

Since @µ(U ) = (@µU)U�1U + U@µ the above equation implies

� igA0
µ = �igUAµU

�1 � (@µU)U�1. (1.68)

This can be written nicely as (use (@µU)U�1 = �U@µU�1)

A0
µ =

i

g
UDµU

�1 =
i

g
U(@µ � igAµ)U

�1. (1.69)

Next we want to read o↵ the field variation of the vector potential from this result.

Note that to first order in the parameter ↵i the above result for A0
µ gives the variation

�Aµ : = (A0
µ �Aµ)|O(↵) =

i

g
(1 + i↵iT i)Dµ((1� i↵iT i)|O(↵) �Aµ

= (
1

g
@µ↵+Aµ + i[↵, Aµ])|O(↵) �Aµ =

1

g
(@µ↵� ig[Aµ,↵]) =

1

g
Dµ↵ (1.70)

where we in the last expressions have introduced also a matrix valued parameter ↵ := ↵iT i.

Note also that in the very last form the covariant derivative acts on the parameter ↵ which

is Lie algebra valued (as is the case also for Aµ) and therefore leads to a commutator since

↵ := ↵iT i is a matrix and thus involves two fundamental representations corresponding to

its two matrix indices! It is important to realize that quite generally a variation of a gauge

field is a covariant quantity.

Evaluating the variation in terms of the Lie algebra we can use the fact that for two

Lie algebra valued quantities (hermitian ones satisfying [T i, T j ] = if ijkT k) we have

[↵,�] = ↵i�j [T i, T j ] = ↵i�jif ijkT k. (1.71)

This then implies (using that the structure constants are antisymmetric in all three indices)

�Ai

µ =
1

g
(Dµ↵)

i =
1

g
(@µ↵

i + gf ijkAj

µ↵
k). (1.72)

This is the result that was quoted above for SU(2) for which f ijk = ✏ijk.

The field strength can now be computed in the same way as in the abelian case de-

scribed in the beginning of this subsection, now keeping the terms quadratic in the matrix

valued gauge fields. This gives directly

[Dµ, D⌫ ] = �ig(@µA⌫ � @⌫Aµ � ig[Aµ, A⌫ ]) , (1.73)

where special care has been taken to the matrix properties of the field Aµ. Defining the

field strength as the expression in the bracket above multiplying  we get

Fµ⌫ := @µA⌫ � @⌫Aµ � ig[Aµ, A⌫ ] (1.74)

or

F i

µ⌫ := @µA
i

⌫ � @⌫A
i

µ + gf ijkAj

µA
k

⌫ . (1.75)
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