
1.11.3 Wick’s theorem

Let us return to the amazing formula derived above

h⌦|T�(xn)....�(x1)|⌦i = lim
T!1(1�i✏)

h0|T�I(xn).....�I(x1)e�i
R
d
4
zHI |0i

h0|e�i
R
d4zHI |0i

, (1.478)

and discuss how to use it in perturbation theory. The next task will thus be to develop

e�cient methods which can be used to compute term by term in the expansion of the

exponential. The first step in this process is to learn how to compute correlation functions

of an arbitrary number of time-ordered quantum fields located at arbitrary spacetime

points. Note that these points can even be the same if a subset of the fields come from the

same interaction term
R
d4zHI(�I(z)) =

�

4!

R
d4z(�I(z))4.

Thus we need to compute correlation functions like

h0|T�(xn)...�(x1)|0i. (1.479)

Note: we will from now on drop the index I on the interaction picture fields �I which have

appeared in all previous formulas.

The main trick is provided by Wick’s theorem which expresses a time-ordered product

of interaction picture quantum fields in terms of normal-ordered products of the fields. The

first step is to split each quantum field into an annihilation and a creation part as follows:

�(x) = �+(x) + ��(x), (1.480)

where the two parts are defined by

�+(x)|0i = 0, h0|��(x) = 0, (1.481)

that is, all annihilation operator terms in �(x) appear in �+(x) while all creation operator

terms are collected in ��(x):

�+(x) =

Z
d3p

(2⇡)3
1p
2Ep

ape
�ip·x, ��(x) =

Z
d3p

(2⇡)3
1p
2Ep

a†pe
ip·x. (1.482)

In this language normal-ordering, denoted as usual by : .. :, means that any product of

fields when normal-ordered is written with all � parts of �(x) to the left of the + parts

so that the normal-ordered expression has zero vacuum expectation value. As an example

consider

: �(x)�(y) :=: (�+(x) + ��(x))(�+(y) + ��(y)) :

= �+(x)�+(y) + ��(x)�+(y) + ��(y)�+(x) + ��(x)��(y), (1.483)

where in the third term we have flipped the order of the two operators without adding the

commutator. This is the content of normal ordering. Note that for the first and last terms

the order of the fields does not matter. Now h0| : �(x)�(y) : |0i = 0 is trivially true.

– 91 –



However, in order to relate such normal-ordered expressions to the time-ordered ones these

commutators are precisely the point. For the 2-point correlation function this is done as

follows

T�(x)�(y) = ✓(x0 � y0)�(x)�(y) + ✓(y0 � x0)�(y)�(x)

=: �(x)�(y) : +✓(x0 � y0)[�+(x),��(y)] + ✓(y0 � x0)[�+(y),��(x)]. (1.484)

To get this result we have used, in the term with x0 > y0,

�+(x)�+(y) + ��(x)�+(y) + �+(x)��(y) + ��(x)��(y) =: �(x)�(y) : +[�+(x),��(y)],

(1.485)

since only the third term needs to be rewritten. Similarly for the term with y0 > x0, we

get

�+(y)�+(x) + �+(y)��(x) + ��(y)�+(x) + ��(y)��(x) =: �(y)�(x) : +[�+(y),��(x)].

(1.486)

The sum of the two commutator terms is called the contraction which is denoted as follows

T�(x)�(y) =: �(x)�(y) : +�(x)�(y). (1.487)

However, by doing the commutators, e.g.,

[�+(x),��(y)] =

Z
d3p

(2⇡)3
1p
2Ep

e�ip·x
Z

d4p0

(2⇡)3
1p
2Ep0

eip
0·y[ap, a

†
p0 ]

=

Z
d3p

(2⇡)3
1

2Ep
e�ip·(x�y) := D(x� y), (1.488)

and the same calculation for the other commutator gives D(y � x). Thus we see that the

contractions are no longer operators and, in fact, exactly reproduce the two terms D(x�y)

and D(y � x) making up the Feynman propagator DF (x� y). Therefore, by sandwiching

the above relation between vacuum states, we get the following well-known relation

h0|T�(x)�(y)|0i = h0| : �(x)�(y) : |0i+ h0|�(x)�(y)|0i = DF (x� y), (1.489)

since the first term is zero due to the normal-ordering and in the second term the contrac-

tion in not an operator so we can use h0|0i = 1. Turning this argument around, since this

equation must be true it implies that the contraction is just the Feynman propagator.

By repeating this exercise for four fields we find , denoting �(xn) as just �n,
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=: �1�2�3�4 : + : �1�2�3�4 : + : �1�2�3�4 : + : �1�2�3�4 :

: �1�2�3�4 : + : �1�2�3�4 : + : �1�2�3�4 :

+ �1�2�3�4 + �1�2�3�4 + �1�2�3�4. (1.490)

Here we have not considered the di↵erent time-ordered terms separately but just noted

that when they are added together they give rise to contractions which, as we saw above,

contain the two possible time-orderings of the two fields in the contraction: �1�2 =

✓(x01 � x02)[�
+
1 ,�

�
2 ] + ✓(x02 � x01)[�

+
2 ,�

�
1 ].

The easiest way to pick up all the commutators in the expression above is to move, step

by step, all the �� to the far left of all the �+ in each term as follows: consider the 4th of

the 16 terms above

�+
1 �

+
2 �

�
3 �

+
4 = �+

1 �
�
3 �

+
2 �

+
4 + �+

1 [�
+
2 ,�

�
3 ]�

+
4 = ��

3 �
+
1 �

+
2 �

+
4 + [�+

1 ,�
�
3 ]�

+
2 �

+
4 + �+

1 [�
+
2 ,�

�
3 ]�

+
4

= ��
3 �

+
1 �

+
2 �

+
4 + [�+

1 ,�
�
3 ]�

+
2 �

+
4 + [�+

2 ,�
�
3 ]�

+
1 �

+
4 , (1.491)

where the last step is possible since the result of doing the commutator is not an operator

and can hence be moved to the left of any operator fields.

The above example shows that the contracted fields can be moved outside the normal

ordering. For example, : �1�2�3�4 := DF (x1 � x3) : �2�4 :. The terms that are contracted

twice are, in this example with four fields, not operators.

Terms with double contractions arise as follows. Consider the 11th of the 16 terms above:

�+
1 �

+
2 �

�
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�
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2 , (1.492)

where the second and third terms after one contraction are still not normal-ordered. So to

get a fully normal-ordered expression another step is needed and a new commutator will

arise. The expression above then becomes

= ��
3 �

�
4 �

+
1 �

+
2 + ��

3 �
+
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3 �

+
2 [�

+
1 ,�

�
4 ] + ��

4 �
+
2 [�

+
1 ,�

�
3 ]. (1.493)

The following theorem generalises this to an arbitrary number of fields:

Wick’s theorem : T�1...�n =: �1...�n : + all possible contractions. (1.494)

The proof is most easily done by induction.
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For any n-point correlation function it is only the terms which are fully contracted (i.e.,

terms that have no normal-ordered factor in them) that contribute. The 4-point function

considered above thus becomes:

h0|T�1�2�3�4|0i = DF (x1 � x2)DF (x3 � x4)

+DF (x1 � x3)DF (x2 � x4) +DF (x1 � x4)DF (x2 � x3). (1.495)

These three terms correspond to the three possible ways to connect four points with two

lines. It will be very convenient to draw lines representing the propagators as we will start

doing in the next section.
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Bubble cancellation

Let us now return to the amazing formula for the exact n-point correlation function

h⌦|T�exact(xn)...�
exact(x1)|⌦i = lim

T!1(1�i✏)

h0|T�(xn)...�(x1)e�i
R
d
4
zHI |0i

h0|e�i
R
d4zHI |0i

. (1.513)

The discussion so far has concerned only the numerator on the RHS of this formula. When

we now address the denominator we can apply the same Feynman rules as above even

though there are no external legs in this case. Thus the diagram expansion of the denomi-

nator will contain only vacuum bubble diagrams. These are however all infinite. Consider

the figur-eight diagram, here called V1, we can try to compute it from the Feynman rules

as follows:

V1 = (�i�)

Z
T

�T

dz0
Z

V

d3z

Z
d4q1
(2⇡)4

Z
d4q2
(2⇡)4

i

q21 �m2 + i✏
e�iq1·(z�z) i

q22 �m2 + i✏
e�iq2·(z�z),

(1.514)

where the space integral is over the volume V . Since all z-dependence disappears from the

integral it is infinite at least due to the space-time integral over z giving the volume factor

factor (2T )V ! 1. One can try to make these diagrams finite by some regularisation

method (such will be discussed later) but even better would be if we could get rid o↵ them

altogether. This is what we will argue below is possible.

A crucial insight is now that, in the denominator above, the figur-eight diagram will

appear once at � level, at �2 there will many diagrams but one of them will be just the

product of two figur-eight diagrams, at pattern that continues at higher orders. However,

n figur-eight diagrams making up one term in the diagram expansion has a symmetry

factor s = n! since all the figur-eight subdiagrams are identical. This implies that they will

exponentiate to eV1 . In fact, this will happen even if all these diagrams contains a common

other bubble diagram and hence eV1 factorises out of all these diagrams. This argument

can be repeated until all kinds of vacuum bubble diagrams have been exponentiated and

factorised. The end result is thus that the whole denominator becomes

h0|e�i
R
d
4
zHI |0i = e⌃all bubblesVbubble . (1.515)

This result is rather amazing in itself but the punch line is instead that also in the numer-

ator, for the same reason, these vacuum bubble diagrams exponentiate and factorise, and

can hence be canceled against the ones in the denominator. Thus the vacuum bubbles are

completely eliminated. The result is the amazing formula no 2:

h⌦|T�exact(xn)...�
exact(x1)|⌦i = lim

T!1(1�i✏)

h0|T�(xn)...�(x1)e�i
R
d
4
zHI |0i

h0|e�i
R
d4zHI |0i

= lim
T!1(1�i✏)

h0|T�(xn)...�(x1)e�i
R
d
4
zHI |0i|connected diagrams, (1.516)

where connected diagrams refers to all diagrams without vacuum bubbles.
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