
1.11.5 Cross sections and S-matrix elements

The purpose of this section is to obtain an expression for the quantity measured in collider

experiments, the cross section �, in terms of the matrix element of U(T,�T ) between the

in state |k1,k2i and the out state hp1, ...,pn| as T ! 1. The connection to the n-point

functions discussed previously, expressed via the amazing formulas

h⌦|T�exact(x1)...�
exact(xn)|⌦i =

h0|T�(x1)...�(xn)e�i
R
d
4
zHI |0i

h0|e�i
R
d4zHI |0i

= h0|T�(x1)...�(xn)e�i
R
d
4
zHI |0i|connected diagrams, (1.523)

can be stated as follows: For a matrix element corresponding to a pair of particles scattering

into n particles, 2 ! n, consider the n + 2-point function and pick up the term that has

the time-ordering of the � fields with two of them in the infinite past and n of them in the

infinite future. Then in a sense to be made more precise below we have

h0|T�(x1)...�(xn)e�i
R
d
4
zHI |0i|connected diagrams ! hp1, ...,pn|e�i

R
d
4
zHI |k1,k2i := Sout,in,

(1.524)

where we also made the relation to the S-matrix explicit. The details of this step is provided

as part of the so called LSZ reduction procedure explained in PS section 7.2 which is not

part of this course.

We now turn to a discussion and derivation of the quantity, the cross section, that

is measured in a collider experiment as, e.g., at LHC at CERN. Consider a fixed target

consisting of a bunch of particles of type A the number of them being NA = ⇢A ⇥ lA ⇥ A

where A is the area perpendicular to the line of motion of the particles in bunch B hitting

those in the target. Also, ⇢A is the density in the bunch (which we assume constant through

out the bunch) and lA is the length of the bunch. The number of particles in bunch B is

similarly NB = ⇢B⇥ lB⇥A. The total number of scattering events N must be proportional

to NA ⇥NB, a fact that suggests the following definition of the cross section � (note that

the area A is common to both bunches) and hence � can roughly be thought of as the

e↵ective size of the target:

N =
�

A
NANB ) � =

N

⇢AlA⇢BlBA
. (1.525)

To obtain a formula for � we need to get an expression for the probability P(AB !
12...n), that is, for the scattering of particlesA and B to produce particles 1 to n. With such

a formula one can then ask other more precise questions like the di↵erential cross section

for A and B to scatter into a specific set of particles with specified momenta p1, ...,pn:

dP(AB ! 12...n) = (⇧n

i=1
d3pi
(2⇡)3

1

2Ei

)|outhp1..pn|�A�Biin|2. (1.526)

Here we express this di↵erential probability in terms of the absolute square of the overlap of

the incoming state |�A�Bi and the outgoing one hp1..pn|. These states are quite di↵erent
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in nature: while the outgoing state is given by precise values of the measured momenta

satisfying the standard QFT normalisation

hp1..pn|p0
1..p

0
ni = ⇧n

i=1(2⇡)
32Epi�

3(pi � p
0
i), (1.527)

the definition of the incoming state reflects the non-zero width of the bunches A and B.
This is done by giving each bunch a distribution function �(r) normalised to one, i.e.,R
d3r|�(r)|2 = 1 implying also that

R
d
3
k

(2⇡)3 |�(k)|
2 = 1. The Fourier transform of �(r) is

denoted �(k) and can be used to construct the incoming state using

|�i =
Z

d3k

(2⇡)3
1p
2Ek

�(k)|ki. (1.528)

Note that although |ki is an exact state in the interacting theory it is normalised as usual,

that is in the same way as |pi in the outgoing state given above. This then implies that

h�|�i = 1. Far in the past the bunches A and B are far apart also in space and we can

assume that

|�A�Bi = |�Ai |�Bi, (1.529)

where each factor state is of the form given above. This formula is valid only for zero

impact parameter which we should not assume is the case. In fact, we must sum over all

possible impact parameters obtained by shifting the B bunch by a vector b in the plane

perpendicular to the line of motion of the B bunch. This means that while the A bunch

state |�Ai is given by the expression for |�i above, the B bunch state now is

|�B(b)i =
Z

d3k

(2⇡)3
1p
2Ek

e�ib·k�B(k)|ki, (1.530)

where the factor e�ib·k is the Fourier transform of the translation operator e�b·r which

moves the distribution function, and thus the bunch, �B(r) a distance b. To get the

complete probability we must integrate over b in the final expression.

Thus the number of scattering events is given by the number of B particles hitting

each A particle (i.e., with NA = ⇢AlAA = 1) times the probability for a scattering to occur

dN =

Z
d2b nB dP(b) (1.531)

where nB = ⇢BlB is the particle density in the plane perpendicular to the incoming direc-

tion. Thus we get, assuming nb is constant, for each A particle

d� =
dN

⇢BlB⇢AlAA
=

dN

nB

=

Z
d2b dP(b). (1.532)

This gives the final expression

d� = (⇧n

i=1
d3pi
(2⇡)3

1

2Ei

)

Z
d2b

Z
d3kA
(2⇡)3

�(kA)p
2EkA

Z
d3k̄A
(2⇡)3

�⇤(k̄A)p
2Ek̄A

Z
d3kB
(2⇡)3

�(kB)p
2EkB

Z
d3k̄B
(2⇡)3

�⇤(k̄B)p
2Ek̄B

⇥ eib·(k̄B�kB)(outhp1..pn|kAkBiin)(inhk̄Ak̄B|p1..pniout) (1.533)
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where all the integrals involving k̄ should now be performed.

In order to do these integrals we extract the momentum conservation delta-functions

from the overlaps and define the remaining quantity as the matrix element M:

outhp1..pn|kAkBiin = iM(kAkB ! p1...pn)(2⇡)
4�4(⌃ k � ⌃ p) (1.534)

(outhp1..pn|k̄Ak̄Biin)⇤ = �iM⇤(k̄Ak̄B ! p1...pn)(2⇡)
4�4(⌃ k̄ � ⌃ p) (1.535)

The name matrix element for the quantity M has its origin in the equation

outhp1..pn|kAkBiin = Shp1..pn, t0|kAkB, t0iS = Shp1..pn, T |e�iH(2T )|kAkB,�T iS |T!1
(1.536)

where we have gone from the Heisenberg picture to the Schrödinger picture, now defined at

a common time due to the time translation operator. Taken a further step to the interaction

picture it reads

outhp1..pn|kAkBiin = Ihp1..pn, t = 1|S|kAkB, t = �1iI := Sfi, (1.537)

with the indices on the S-matrix refering to initial and final. Hence, writing S = 1 + iT

we can consider M to be the matrix elements, or scattering amplitude, of the T -matrix

between states (with no su�xes in or out). This will be further discussed later.

The next step is to do the
R
d2b integrals which gives (2⇡)2�2(k̄?

B
� k

?
B
). Thus the

integrals in the two k̄
?
B

directions are trivial putting k̄
?
B

= k
?
B

in d� above. As a second

step we perform the corresponding k̄
?
A

integrals using two of the delta functions in the

definition of M⇤ above. This will implement the relations

k̄
?
A = ⌃ip

?
i � k̄

?
B = ⌃ip

?
i � k

?
B = k

?
A, (1.538)

where the last equality follows from using the information in the delta-functions in the

definition of M.

At this point there are two k̄ integrals left to do:
R
dk̄z

A

R
dk̄z

B
. Using the remaining

two delta-functions from the M⇤ definition we get
Z

dk̄zA

Z
dk̄zB�(ĒA + ĒB � ⌃iEi)�(k̄

z

A + k̄zB � ⌃ip
z

i ) = (1.539)

Z
dk̄zA�(ĒA + ĒB � ⌃iEi)|k̄zB=⌃ip

z
i�k̄

z
A
. (1.540)

To do the last integral we need to recall that ĒA =
q
k̄
2
A
+m2

A
and ĒB =

q
k̄
2
B
+m2

B

so that when viewing the argument of the delta function as a function of the integration

variable k̄z
A
we get two contributions to the derivative of ĒA+ ĒB �⌃iEi, namely @ĒA

@k̄
z
A

and

@ĒB

@k̄
z
A

= �@ĒB

@k̄
z
B

where we used the fact that k̄z
B
= ⌃ipzi � k̄z

A
. We then directly find

Z
dk̄zA�(ĒA + ĒB � ⌃iEi)|k̄zB=⌃ip

z
i�k̄

z
A
=

1

| k̄
z
A

ĒA
� k̄

z
B

ĒB
|
:=

1

|vA � vB|
. (1.541)
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Note that the last equality is a bit tricky since we only know that k̄
?
A

= k
?
A
, k̄?

B
= k

?
B

together with ĒA + ĒB = ⌃iEi = EA + EB and k̄z
A
+ k̄z

B
= ⌃ipzi = kz

A
+ kz

B
. We will

however assume that this means that k̄A = kA and the same for B. This is certainly the

most natural solution to these conditions on the momenta.

Using this information we can perform the
R
d3kA and

R
d3kB integrals provided we

can argue that in the delta-functions occurring in the definition of M we can use the

central values pA+ pB, as defined by the momentum distribution �(k), instead of kA+ kB.

This argument is given in the book by PS and is based on detector properties in actual

experiments. With this input the integrals are just the normalization conditions on the

distribution functions and the final answer becomes

d� =
1

2EA2EB|vA � vB|
(⇧n

i=1
d3pi
(2⇡)3

1

2Ei

) |M(pA, pB ! p1, p2...pn)|2(2⇡)4�4(pA+pB�⌃ipi).

(1.542)

Two important facts about this expression are:

1. The following parts of the d� is called the n-body phase space

Z
⇧n =

Z
(⇧n

i=1
d3pi
(2⇡)3

1

2Ei

)(2⇡)4�4(pA + pB � ⌃ipi). (1.543)

2. The whole expression for d� is Lorentz invariant except the prefactor

1

2EA2EB|vA � vB|
=

1

|EBpzA � EApzB|
=

1

|✏xyµ⌫pµAp⌫B|
, (1.544)

which is boost invariant in the z direction and transforms as a cross sectional area in the

xy directions. We can thus use this result in both the lab frame and the center of mass

frame without any problems.

One special case is the 2 ! 2 process which simplifies quite a bit, especially in the

center of mass frame. In this case the incoming particles have total three-momentum equal

to zero so the space delta-functions put also the sum of the outgoing momenta to zero.

Thus we can trivially do the p2 space integrals
R
d3p2 to find

Z
⇧2 =

Z
d3p1
(2⇡)3

1

2E1

Z
d3p2
(2⇡)3

1

2E2
(2⇡)4�(EA + EB � E1 � E2)�

3(p1 + p2) =

Z
dp1p21d⌦

(2⇡)32E12E2
(2⇡)�(EA+EB�E1�E2) =

Z
d⌦

p21
16⇡2E1E2

(
p1
E1

+
p1
E2

)�1|p1=p̃1 =

Z
d⌦

1

16⇡2

|p1|
Ecm

|p1=p̃1 ,

(1.545)

where we used the fact that Ecm = EA + EB = E1 + E2 and where p̃1 is the solution to

EA + EB = E1 + E2 =
p
p
2
1 +m2

1 +
p

p
2
1 +m2

2. Note that although the momenta cancel

both for the incoming and outgoing pairs their energies are not the same since at this

point all four masses are arbitrary. Inserting these results into the di↵erential cross section

formula gives

(
d�

d⌦
)cm =

1

2EA2EB|vA � vB|
|p̃1|

(2⇡)24Ecm

|M(pA, pB ! p1, p2)|2. (1.546)
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Finally, by imposing that all four masses are the same this simplifies even further to

(
d�

d⌦
)cm(m1 = m2 = mA = mB = m) =

|M|2
64⇡2E2

cm

, (1.547)

where we have used that here E1 = E2 and EA = EB and that the sum in both cases

equals Ecm. We also used that |vA � vB| = 2|vA| = 2 |pA|
EA

= 2 |pcm|
1
2Ecm

= 4 |pcm|
Ecm

and that all

momenta |p| are equal and denoted |pcm|. This is the result quoted in Chapter 1 of PS.

Formally one can also apply the cross section formula to one ”incoming” particle at rest

to try to obtain a formula for the decay amplitude one this single particle. This procedure

is not correct but does give the correct answer as is shown in PS Chapter 7, section 7.3

which is not part of the course. The formula obtained is

d� =
1

2mA

(⇧n

i=1
d3pi
(2⇡)3

1

2Ei

)|M(A ! p1....pn)|2(2⇡)4�4(pA � ⌃ipi). (1.548)

The final step in the process of computing cross sections is to relate the matrix element

M defined by

outhp1..pn|kAkBiin = iM(kAkB ! p1...pn)(2⇡)
4�4(⌃ k � ⌃ p), (1.549)

to the correlation functions that we know how to compute from before, namely

h0|T�(x1)....�(xn)e�i
R
d
4
xHI |0i|connected. (1.550)

This will be done by in some sense pushing the the explicit � fields either to the past or

future infinity and there relate them to the in and out states. This leaves the operator

e�i
R
d
4
xHI which will then correspond to the operator S whose matrix elements are denoted

M. The proof that this can be done rigorously is provided by the so called LSZ reduction

procedure. This is the subject of PS section 7.2 which is not part of the course.

Briefly, however, this LSZ step can be described as follows. In a fully connected

diagram (see end of the previous lecture) for a correlation function the �(x) fields are

contracted into a field at a vertex. The resulting propagator is then related to

�(x)|0i =
Z

d3p

(2⇡)3
1p
2Ep

eip·xa†p|0i =
Z

d3p

(2⇡)3
1

2Ep
eip·x|pi0. (1.551)

Replacing �(x)|0i by |pi0 will in the expression for the correlation function essentially cor-

respond to dropping the integral over the external momentum together with the propagator

and exponentials eip·x. This means that the leg is amputated (see end of previous lecture)

but such a leg can have any number of loops on it making it infinite when computed. The

consequence of this fact is that an infinite constant, Z, will arise that is associated with

renormalisation.
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1.11.6 Computing S-matrix elements from Feynman diagrams

The formula for the di↵erential cross section for AB ! 12...n scattering was derived in the

previous section and reads

d� =
1

2EA2EB|vA � vB|
(⇧n

i=1
d3pi
(2⇡)3

1

2Ei

) |M(pA, pB ! p1, p2...pn)|2(2⇡)4�4(pA+pB�⌃ipi).

(1.552)

The matrix element M that appears in this formula is defined in terms of the overlap

between in-states and out-states by the following equation:

outhpf |piiin := iM(pi ! pf ) (2⇡)
4�4(⌃pf � ⌃pi), (1.553)

where the two p0s in the delta-functions are as usual given by the respective Ep.

The important point here is that outhpf |piiin and thus M can be related to the Feyn-

man diagram expansion developed previously for correlation functions. The proof of this

statement is known as the LSZ-reduction and is carried out in detail in Section 7.2 of PS.

This section is not part of the course so instead we will look at some specific cases and this

way try to understand how it works.

First we must be very precise about what the notation above means. The overlap outhpf |piiin
between the in-state and the out-state is written in the H-picture (the Heisenberg picture)

so these states are time-independent. Instead, it is the operators that carry the time de-

pendence. E.g., the operators relevant for us here are just quantised classical fields, like

�(t, r), which thus are in the H-picture. Also, in the H-picture the in- and out- states are

time-independent eigenstates of the full Hamiltonian and are thus impossible to construct

exactly in an interacting QFT.

Instead we will relate these states and the overlap outhpf |piiin to the corresponding

objects in the I-picture (the interaction picture). This way we will be able to see more

explicitly what the S-matrix is. To do this we fix a time, say t0, and declare that at that

time the H-picture states are the same as the S-picture ones. Thus

outhpf |piiin := Sht0,pf |t0,piiS . (1.554)

In the S-picture we can then evolve the ket-state backwards in time to �T and the bra-state

forward to +T and then let T ! 1. Using that time-evolution in the S-picture is given

by |t,piS := e�iH(t�t0)|t0,piS , we find

outhpf |piiin := lim
T!1

ShT,pf |e�iH(2T )|� T,piiS . (1.555)

This way one can view the S-matrix as

Sfi := lim
T!1

ShT,pf |+ T,piiS , (1.556)

i.e., as the overlap between the in-state translated forward in time to +T and there checked

how it compares to the out-state.

– 106 –



We will now go half-way to the S-picture and get the overlap in the I-picture. The

key idea here is to leave some time-dependence, due to H0, with the operators as we have

done before, and let the states get a time-dependence from the interaction part of the

Hamiltonian, i.e., HI . This is achieved by defining the I-picture states by

|t,piS := e�iH0(t�t0)|t0,piI . (1.557)

This means that in the I-picture the operators regains time-dependence from H0 precisely

as we did it in the beginning of this discussion where �I was defined. To see what this

implies consider again

outhpf |piiin = lim
T!1

ShT,pf |e�iH(T�t0))eiH(�T�t0))|� T,piiS
= lim

T!1
IhT,pf |eiH0(T�t0))e�iH(T�t0))eiH(�T�t0))e�iH0(�T�t0))|� T,piiI

= lim
T!1

IhT,pf |U(T, t0)(U(�T, t0))
†|� T,piiI

= lim
T!1

IhT,pf |U(T,�T )|� T,piiI . (1.558)

This is a nice result since we know from before that U(t, t0) is expressible in terms of the

interaction picture field �I and thus under full control. The tricky part here is the states

since they have a time-dependence that comes from HI and therefore are very complicated.

There are two simplifications taking place at this point:

1) Since the in and out states are asymptotic ones (i.e., coming in from very far and

measured as outgoing states also very far away) they will factorise as:

|p1, ...,pniI = |p1iI ....|pniI . (1.559)

2) Each single particle state |piI can then be replaced by a free state |pi0 provided we

compensate by an infinite (multiplicative) constant as a result of the amputation of external

legs (below). This constant will be dealt with, and understood, later in the context of the

renormalisation procedure.

Discarding non-interacting processes by defining the S-matrix as S = 1 + iT and

thereby restricting ourselves to only matrix elements of iT , we have finally

Ihpf |iT |piiI = lim
T!1

0hpf |T (e�i
R T
�T HI(t)dt)|pii0|(fully connected, amputated, renormalised).

(1.560)

This is an extremely nice formula simply because one can now compute the RHS to any

desired level in the perturbation expansion. Remember, however, that trying to sum it

up leads often to an asymptotic series which starts to diverge after a certain number of

terms. If this happens one needs mathematics that has only in the last few years become

important in this context, like resurgence and transseries.

To get familiar with this formula and how it works we consider some simple cases in

�4 theory. Consider the simplest 2 to 2 scattering: notation AB ! 12. Then

1) at order 0 in the coupling constant �:

0hp1,p2|pApBi0 =
p
2EA2EB2E12E2h0|a1a2a†Aa

†
B
|0i. (1.561)
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