
1.12 Computation of cross sections for some elementary processes

In this chapter we will start computing cross sections for scattering processes in QED.

There are several interesting cases which can be divided into three groups

1) e+e� ! e+e� called Bhabha scattering, or ! µ+µ� (considered already), or ! ⌧+⌧�

or ! qq̄, where the first three cases involve leptons/anti-leptons from each of the three

families (generations) and the last one any quark/anti-quark pair from any family.

Related processes (by crossing symmetry as explained later)

e�e� ! e�e� : Møller scattering, similarly for the other cases above.

2) Compton scattering: e�� ! e�� given by the famous Klein-Nishina formula.

Related processes (by crossing symmetry as explained later)

Pair annihilation e+e� ! 2�.

3) Scattering against fixed target:

a) Mott scattering e�⇥ ! e�⇥ (⇥=fixed target)

b) Annihilation and pair creation in the field of a fixed target

c) Bremsstrahlung e�⇥ ! e��⇥ (⇥=fixed target)

1.12.1 Computation of unpolarised scattering processes: e+e� ! µ+µ�

The first, and in some sense the simplest, process we can consider is the one discussed

in the beginning of the course e+e� ! µ+µ�. The Feynman diagram is (the only one,

compare to �4)

p0

qDF

k

p

k0

e+

µ�

e�

µ+

(1.642)

which directly gives the following expression by using the QED Feynman rules from the

previous chapter

= ūr(k)(�ie�µ)vr
0
(k0)

✓
�igµ⌫
q2 + i✏

◆
v̄s

0
(p0)(�ie�⌫)us(p). (1.643)

Note that the spinors u and v in the first factor are the same as the ones in the last factor

except for masses k2 = m2
µ and p2 = m2

e, and the same for the primed momenta.

Comment: This diagram could be written down in a Lorentz invariant form directly from

the Feynman rules which is of course very nice. Thus we did not need to involve vacuum
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states or operators of any kind! Can these rules perhaps be derived without going through

the rather involved steps of non-Lorentz covariant second quantised perturbation theory

(i.e., Chapter 4 in PS)? The answer is Yes! This is exactly what the Feynman path integral

formulation provides. If you are interested, see Chap 9 in PS, but this chapter is not part

of the course.

Simplifying the above expression a bit and equating it to the matrix element iM
(note the i) we get

iM(e+e� ! µ+µ�) =
ie2

q2 + i✏

⇣
v̄s

0
(p0)�µus(p)

⌘⇣
ūr(k)�µv

r
0
(k0)

⌘
|q=p+p0 . (1.644)

To get the cross section we need to compute the absolute square of this matrix element,

i.e., |M|2 = M?M. This requires getting the complex conjugates of the expressions in the

brackets above:
⇣
v̄s

0
(p0)�µus(p)

⌘†
=
⇣
(vs

0
(p0))†�0�µus(p)

⌘†
= u†�µ†�0v = ū�µv, (1.645)

where we have used the familiar identity �0(�µ)†�0 = �µ. This step gives rise to the

following rather nice expression

|M|2
pol

=
e4

(q2 + i✏)2

⇣
v̄r
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(k0)�µu

r(k)
⌘⇣

ūr(k)�⌫v
r
0
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⌘⇣
ūs(p)�µvs

0
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⌘⇣

v̄s
0
(p0)�⌫us(p)

⌘
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(1.646)

This expression is valid for any polarisations of the in-coming and out-going particles,

thus the pol on |M|2
pol

. It can be computed rather easily with a trick that we will come

back to later. At this point it is better to do the unpolarised case first to see how one

should handle expressions like this. As explained in the beginning of the course this means

summing over the out-going polarisations and averaging over the in-coming ones as follows

|M|2
unpol

= (
1

2
⌃s

1

2
⌃s0)⌃r⌃r0 |M(e+e� ! µ+µ�)|2

pol
= (1.647)
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(1.648)

It is here that the completeness relation for the spinors u and v that we derives in the

Dirac chapter become extremely handy: first use ⌃rur(k)ūr(k) = �⇢k⇢ +m to get

⌃r,r0

⇣
v̄r

0
(k0)�µu

r(k)
⌘⇣

ūr(k)�⌫v
r
0
(k0)

⌘
= ⌃r0

⇣
v̄r

0
(k0)�µ(�

⇢k⇢ +m)�⌫v
r
0
(k0)

⌘
. (1.649)

Then the second step is the key: we can move v̄r
0
(k0) to the end of the expression and

there use ⌃r0vr
0
(k0)v̄r

0
(k0) = �⇢k0⇢ �m to get a trace over the spinorial indices. That this

is possible becomes clear by writing out the spinor indices and remembering that the v

spinor is just a classical object and can be moved around freely. Thus the above expression

simplifies to

tr
⇣
�µ(�

⇢k⇢ +m)�⌫(�
�k0� �m)

⌘
. (1.650)
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Repeating these steps for the other factor (i.e., the other Dirac line in the Feynman dia-

gram) we get (using /p := �µpµ)

|M|2
unpol

=
e4

4(q2 + i✏)2
tr
⇣
�µ(/k+m(µ))�⌫( /k

0�m(µ))
⌘
tr
⇣
�µ(/p0�m(e))�

⌫(/p+m(e))
⌘
, (1.651)

where the indices on the masses m(e) and m(µ) indicate which fermion line the trace belongs

to.

To evaluate trace expressions like the ones above we need some traceology. Since we

already know how to expand the product of any number of gamma matrices in the gamma

basis the problem of computing any trace is reduced to verifying that it is only the unit

matrix that has a non-zero trace. The gamma basis is, as we know from before,

1, �µ, �µ⌫ , �µ�5, �5. (1.652)

The only object in this list having a non-zero trace is the unit matrix, tr1 = 4 since

tr�µ = 0 by the �5-trick, tr�µ⌫ = 0 by trace cyclicity, tr�µ�5,= 0 again by the �5-trick

and tr�5 = 0 by the �0-trick. With this information we get

tr(�µ�⌫) = tr(gµ⌫ + �µ⌫) = 4gµ⌫ , (1.653)

tr(�µ�⌫�⇢) = 0, (1.654)

and finally

tr(�µ�⌫�⇢��) = tr((gµ⌫ + �µ⌫)(g⇢� + �⇢�)) = tr(gµ⌫g⇢� + �µ⌫g⇢� + g⇢��⇢� + �µ⌫�⇢�).

(1.655)

The only non-trivial term here is the last one: Using the idea explained previously (all

terms in the expansion must have coe�cient +1 or �1) we find the identity

�µ⌫�⇢� = �µ⌫⇢� � 4�[µ[⇢�
⌫]
�] � 2�µ⌫⇢� . (1.656)

Thus

tr(�µ�⌫�⇢��) = 4(gµ⌫g⇢� � (gµ⇢g⌫� � gµ�g⌫⇢)). (1.657)

Another type of useful identities are the following ones:

�µ�µ = 4, �⌫�µ�⌫ = �2�µ, �⇢�µ�⌫�⇢ = �⇢(�µ⌫ + gµ⌫)�⇢ = 4gµ⌫ . (1.658)

A final useful identity of this type is

�µ�⌫�⇢���µ = �2���⇢�⌫ (1.659)

where we should note the reversed order of the gamma matrices on the RHS.

We can now return to the trace expressions above. Consider again

tr
⇣
�µ(/p0 �m)�⌫(/p+m)

⌘
= tr

⇣
�µ /p0�⌫/p�m2�µ�⌫

⌘
, (1.660)
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where we have dropped the terms linear in m since they contain three gamma matrices

and hence has zero trace. Explicitly this expression reads

= p0⇢p�tr(�µ�⇢�
⌫��)� 4m2gµ⌫ = 4p0⇢p�(�µ⇢ �

⌫

� � (gµ⌫g⇢� � �µ��
⌫

⇢))� 4m2gµ⌫ . (1.661)

Here we have first used �µ�⇢ = �µ⇢ + �µ⇢ and similarly for the other two gamma matrices,

and then tr(�µ⇢�⌫�) = �4(gµ⌫g⇢� � �µ��⌫⇢). Simplifying this expression we get

= 4(p0µp⌫ + p0⌫pµ � p · p0gµ⌫ �m2gµ⌫). (1.662)

The other trace gives the same result but with momenta k and k0 instead. The whole

answer for the unpolarised amplitude is therefore

|M|2
unpol

=
4e4

(q2 + i✏)2
(kµk

0
⌫ + k⌫k

0
µ � gµ⌫(k · k0 +m2

(µ)))(p
µp0⌫ + p⌫p0µ � gµ⌫(p · p0 +m2

(e))).

(1.663)

This result was discussed earlier in the course in the high energy limit where the

electron mass could be neglected. Setting m(e) = 0 above simplifies the result quite a bit:

|M|2
unpol

|m(e)=0 =
8e4

(q2 + i✏)2
(k · pk0 · p0 + k · p0k0 · p+m2

(µ)p · p
0). (1.664)

To get out the physics from this result one must choose a frame where it can inter-

preted, e.g., the

1) The laboratory frame, i.e., fixed target, (Lab) or

2) the center of mass frame (CM).

We will do the analysis in the CM frame. Since the the two incoming particles is a

particle/anti-particle pair they have the same mass and hence in this frame p2 = �p1.

Then also the energies are the same which is also true for the out-going particle/anti-

particle pair which however have di↵erent masses from the in-coming pair.

These aspects are part of what is called the kinematics of the process and its details

depend heavily on the frame chosen. To be completely specific we have

pµ(e�) = (E, 0, 0, p), p0µ(e+) = (E, 0, 0,�p), (1.665)

kµ(µ�) = (E,k), k0µ(µ+) = (E,�k), (1.666)

where the in-coming particles move in the ẑ-direction and the out-going in some general

but opposite directions k and k
0 = �k.

It then becomes an easy exercise to compute the various scalar products appearing in
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the expression for |M|2 obtained above: (recall that we have put m(e±) = 0 here which

implies that E = |pz| for the electron/positron pair)

p · p0 = EE0 � pzp
0
z = E2 + E2 = 2E2, k · k0 = E2 � k · k0 = E2 + |k|2, (1.667)

q2 = (p+ p0)2 = p2 + p02 + 2p · p0 = 0 + 0 + 4E2 = 4E2, (1.668)

p · k = p0 · k0 = (E, 0, 0, E) · (E,k) = E2 � E|k| cos ✓, (1.669)

p · k0 = p0 · k = (E, 0, 0, E) · (E,�k) = E2 + E|k| cos ✓. (1.670)

With these scalar products at hand we get

|M|2
unpol

=
e4

2E4

⇣
(E2 � E|k| cos ✓)2 + (E2 + E|k| cos ✓)2 + 2E2m2

(µ)

⌘
. (1.671)

We note that the |k| terms cancel and hence , using |k|2 = E2 �m2
(µ), this simplifies to

|M|2
unpol

= e4
 
(1 +

m2
(µ)

E2
) + (1�

m2
(µ)

E2
) cos2 ✓

!
. (1.672)

The final task is to insert this into the di↵erential cross section formula for 2 ! 2

scattering in the CM frame which reads

(
d�

d⌦
)CM |unpol =

1

2EA2EB|vA � vB|
|p1|

(2⇡)24ECM

|M(pA, pB ! p1, p2)|2. (1.673)

To get the result in the case studied here we need to translate the notation in the formula

to our present notation (c = 1 here, and e± are essentially massless)

EA = EB = E =
1

2
ECM , |vA � vB| = 2, p1 = k =

q
E2 �m2

(µ). (1.674)

This gives

(
d�

d⌦
)CM |unpol, m(e)=0 =

1

E2
CM

1

2

q
E2 �m2

(µ)

(2⇡)24ECM

|M(e+e� ! µ+µ�)|2|unpol, m(e)=0 =

=
↵2

4E2
CM

s

1�
m2

(µ)

E2

 
(1 +

m2
(µ)

E2
) + (1�

m2
(µ)

E2
) cos2 ✓

!
, (1.675)

where ↵ = e
2

4⇡ ⇡ 1
137 is the fine structure constant.

Integrating this over the angles produces the total cross section:

�|unpol =
Z

(
d�

d⌦
)CM |unpold⌦ =

Z
⇡

0
d✓ sin ✓

Z 2⇡

0
d�(

d�

d⌦
)CM |unpol

=
4⇡↵2

3E2
CM

s

1�
m2

(µ)

E2

 
1 +

1

2

m2
(µ)

E2

!
. (1.676)
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This graph contains a number of sharp peaks that we need to understand. They are

due to various bound states that can be formed just below threshold for a new qq̄ pair.

Consider the previous graph for �(e+e� ! µ+µ�) and imaging increasing the energy of

the e± pair from well below the threshold where muon-pair cannot be created. A bit before

reaching the threshold the muon-pair can in fact be created if they end up in abound state

since such a state has slightly lower energy than the energy of two muons at rest. After

all, it will cost some energy to break up the bound state. The existence of this bound

state, which is not contained in the graph computed here, will when the e± energy is high

enough to create it, cause a sudden huge increase in the cross section which is seen as a

peak in the graph above. Thus, such a peak will appear each time the energy is increased

to a level where a new qq̄ bound state can be created. Such bound states are very short-

lived, e.g., the µ+µ� muons of the dimuonium38 state will annihilate in about 10�12s. The

formation of bound states can be analysed in great detail by the methods developed here

combined with a wave function description of the bound state itself. In QFT a bound state

corresponds to a loop diagram which an infinite number of photon corrections. Section 5.2

in PS (not in the course) contains more details on this.

This graph can be explained easily by assuming the fundamental particles in Nature

to have the following properties:

Leptons : Q = �1 : e, µ, ⌧, Q = 0 : ⌫e, ⌫µ, ⌫⌧ , (1.679)

Quarks : Q = 2/3 : u, c, t, Q = �1/3 : d, s, b, (1.680)

If the energy is high enough for quarks to be produced in the e+e� scattering the

formula above for d�

d⌦ can still be used if the following changes are made:

1. For out-going states with charge Q: e ! Qe, i.e., d�

d⌦ ! Q2 d�

d⌦ .

2. Each quark has a new charge called color taking three values which are not observed

in experimants: d�

d⌦ ! 3 d�

d⌦ .

3. The produced quark/anti-quark (qq̄) pairs are confined (more later): qq̄ ! hadrons.

When produced the quark/anti-quark pairs are basically free since QCD is an asymptot-

ically free
39 theory (will be discussed a bit more at the end of the course).

With this input we can compute the factor 3⌃iQ2
i
which arises when the energy is

raised step by step over a point where a new quark/anti-quark pair can be created:

a) i=u,d,s ) 3⌃iQ2
i
= 3((13)

2 + (23)
2 + (13)

2) = 2.

b) i=u,d,s,c ) 3⌃iQ2
i
= 2 + 3(23)

2 = 10
3 for energies > 2⇥ 1.2⇥GeV .

38See Jentschura et al, ArXiv physics/9706026, for a discussion.
39This discovery gave the 2004 Nobel prize to David Gross, David Politzer and Frank Wilczek.
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c) i=u,d,s,c,b ) 3⌃iQ2
i
= 10

3 + 3(13)
2 = 11

3 for energies > 2⇥ 4.7⇥GeV

d) i=u,d,s,c,b,t=all ) 3⌃iQ2
i
= 3⇥ 3((13)

2 + (23)
2) = 5 for energies > 2⇥ 175⇥GeV
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