
1.12.2 Helicity structure of polarised scattering processes: e+e� ! µ+µ�

Recall the scattering process e+e� ! µ+µ� discussed in the previous section. The relevant

Feynman diagram is

p0

qDF

k

p

k0

e+

µ�
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(1.681)

which we saw gave rise to the following expression by using the QED Feynman rules from

the previous chapter:

iM(e+e� ! µ+µ�) =
⇣
ūr(k)(�ie�µ)vr

0
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⌘✓ �igµ⌫
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0
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(1.682)

Note that the spinors u and v in the first factor are the same as the ones in the last fac-

tor except for masses k2 = m2
(µ) and p2 = m2

(e), and the same for the primed momenta.

Before squaring it, the scattering amplitude of course depends on the spin directions for

the various particles given by the upper indices r, r0, s, s0 on the polarisation spinors u and v.

In this section we will be interested in computing the full polarised result for the dif-

ferential cross section, that is, we need to square the scattering amplitude keeping the

dependence of each particle’s spin direction. To do this we need a little trick that will be

explained below.

First we note that one can choose to quantise the spin for each particle independently,

that is, in di↵erent directions. However, we will not do the complete calculation here but

simplify it a bit by looking only at energies high enough that the masses of both the e±

and the µ± particles can be neglected. In this situation it is convenient to choose the

quantisation direction to be along the motion of the particles e� and the µ� since spin

direction can then be replaced by helicity which is a Lorentz invariant concept for massless

particles.

To see this relation to helicity we consider the incoming e± which are moving in the pos-

itive and negative ẑ-direction, respectively for the e� and e+. The spinor for the electron

is then, with s giving the polarisation in the ẑ direction, i.e., ⇠1 = ( 1
0 ) and ⇠

2 = ( 0
1 ),

us(p) =

 p
p · �⇠sp
p · �̄⇠s

!
, (1.683)
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and since the e� is moving in the positive ẑ-direction, we have pµ = (E, 0, 0, p3) with p3 > 0

and hence

p · � := p01� p · � = E1� p3�3. (1.684)

This implies that

p
p · � =

p
E � p3

1

2
(1+ �3) +

p
E + p3

1

2
(1� �3), (1.685)

and similarly for
p
p · �̄ but with the opposite sign in front of �3. For the u spinor this

means in the high energy limit (in the positive ẑ-direction) where pµ = (E, 0, 0, E)

us(p) !
p
2E

 
1
2(1� �3)⇠s

1
2(1+ �3)⇠s

!
=

p
2E

 
⇠2
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!
. (1.686)

Thus we find that the projections onto the L and R parts of this spinor us(p) are related

to the spin direction. If the electron in the scattering process we analyse here is chosen to

have helicity h = 1
2 it has a right-handed polarisation and hence described by the R part

of u: (recall that ⇠1 is spin up in the ẑ-direction)

usR(p) := PRu
s(p) =

1

2
(1 + �5)us(p) =

p
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0
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!
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p
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0
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0

0
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1
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. (1.687)

Similarly for the left-handed helicity h = �1
2 :

usL(p) := PLu
s(p) =

1

2
(1� �5)us(p) =
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These equations show how the chiral projections PLus(p) and PRus(p) are tied to the he-

licity in this massless high energy limit.

This makes it possible to project expressions like v̄�µu onto specific helicities (i.e., spin

directions relative the direction of motion). For instance, for the incoming right-handed

electron we use

v̄s
0
(p0)�µus(p) ! v̄s

0
(p0)�µPRu

s(p) = v̄s
0
(p0)�µ

1

2
(1 + �5)us(p). (1.689)

This result can be used in an interesting way by simply moving the projection operator PR

from the u spinor to the v spinor:

v̄s
0
(p0)�µusR(p) = v̄s

0
(p0)�µ

1

2
(1 + �5)us(p) = v̄s

0
(p0)

1

2
(1� �5)�µus(p)

= (
1

2
(1 + �5)vs

0
(p0))†�0�µus(p) = v̄s

0
R(p

0)�µus(p), (1.690)
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which tells us that a right-handed electron can only give a non-zero scattering amplitude

if scattered against a left-handed positron. Note that vs
0

R
(p0) is related to the ⇠1 which as

we have shown in Chapter 3 for anti-particles is a left-handed positron. Thus

iM(e�
R
e+
L
! µ�µ+) 6= 0, while iM(e�

R
e+
R
! µ�µ+) = 0. (1.691)

This result, that was quoted already in Chap 1 of PS, is thus seen to be a result of the

properties of the u and v spinors. Note that the total spin of the e± pair is zero for the

case e�
R
e+
R
and that, as we know from before, there is no spin zero component of the photon

that this state can couple to. This explains why the corresponding scattering amplitude

vanishes. There seems to be an issue here that requires an answer: the photon line con-

nected to the each vertex propagates all components of the vector potential since it is just

given by �igµ⌫/q2. The resolution of this problem is related to the so called Ward identity

as we will see in the next lecture.

There is a second important implication of the result above about the projection oper-

ators and their connection to the spin direction: s can be left unspecified so one can

compute the absolute square of v̄s
0
(p0)�µus

R
(p) by summing over spin directions and using

the completeness relations exactly as we did in the previous section for the unpolarised

cross section. This is then done for both in-coming and out-going spin variables but with-

out the factors of 1
2 for the in-coming particles since this is not an average anymore.

To see how this works consider the square of the e±-line factor above:
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✓
v̄s

0
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1 + �5

2
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◆†✓
v̄s
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2
us(p)

◆

= ⌃s,s0

✓
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1 + �5

2
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0
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◆✓
v̄s

0
(p0)�⌫

1 + �5

2
us(p)

◆
, (1.692)

where before taking the hermitian conjugate we have moved the projection operator 1+�
5

2

from the u spinor to the v spinor as explained above. This step does not change PL to PR

since it passes two gamma-matrices and is hermitian. Thus the above result follows and we

can use the completeness relation for v spinors. The last expression above then becomes

= ⌃s

✓
ūs(p)�µ

1 + �5

2
(/p0 �m)�⌫

1 + �5

2
us(p)

◆
. (1.693)

In the present high energy approximation we can neglect the mass term. Moving the ū

spinor to the far right of the expression and replace the uū with /p �m and dropping the

mass term we get again a trace (as we did for the unpolarised case computed in the previous

section)

= tr

✓
�µ

1 + �5

2
/p0�⌫

1 + �5

2
/p

◆
= tr

✓
�µ /p0�⌫

1 + �5

2
/p

◆
= tr

✓
/p�

µ /p0�⌫
1 + �5

2

◆
, (1.694)

where we have moved the projection operators next to each other and used P 2
L
= PL, and

the trace cyclicity in the last step.
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The reason for the last step was just to get it in a form that can be easily compared

to the unpolarised calculation in the previous section. In fact, writing the above result as

two terms as follows

=
1

2
p⇢p

0
�tr(�

⇢�µ���⌫) +
1

2
p⇢p

0
�tr(�

⇢�µ���⌫�5), (1.695)

we see that, apart from the factor 1
2 the first term is exactly the expression we evaluated

in the previous section, while the second term is new.

To compute the second term we can use the gamma-basis and expand the four gamma

matrices �⇢�µ���⌫ in terms of it. It will give gamma-basis elements with with four, two

and zero vector indices. Then the trace gives a non-zero result only for the 4-index gamma

term since that is related to �5. Thus the second term above becomes

tr(�⇢�µ���⌫�5) = �i✏⇢µ�⌫tr(�5�5) = �4i✏⇢µ�⌫ . (1.696)

Recall the definition �5 := i�0�1�2�3 and ✏0123 = +1. The whole result for the trace is

then

tr

✓
/p�

µ /p0�⌫
1 + �5

2

◆
= 2(p0µp⌫ + pµp0⌫ � gµ⌫p · p0 � i✏⇢µ�⌫p⇢p

0
�). (1.697)

Repeating these steps for the out-going fermion line we get

tr

✓
/k0�µ/k�⌫

1 + �5

2

◆
= 2(kµk

0
⌫ + k0µk⌫ � gµ⌫k

0 · k � i✏⇢µ�⌫k
0⇢k�). (1.698)

The total result for the square of the scattering amplitude |M|2 is obtained by contracting

together the last two expressions (noting that the indices ⇢� must not be repeated):

|M|2|pol =
4e4

(q2)2
(2p · k p0 · k0 + 2p · k0 p0 · k � ✏↵µ�⌫✏⇢µ�⌫k

0
↵k�p

⇢p0�. (1.699)

Here we need to expand the twice contraction product of two epsilon tensors:

✏↵µ�⌫✏⇢µ�⌫ = �4�↵�⇢� := �2(�↵⇢ �
�

� � �↵� �
�

⇢ ), (1.700)

which follows from the fact that if also the last four indices are contracted pairwise we

must get ✏µ⌫⇢�✏µ⌫⇢� = �24.

Comment: In fact the uncontracted product gives

✏µ⌫⇢�✏↵��� = �4!�µ⌫⇢�
↵���

, (1.701)

since if the 24 terms on the RHS are written out explicitly (all with coe�cient 1 or -1) it

gives the correct result for whatever choice of values of the eight indices one checks. The

minus sign above comes from the Minkowski metric since by definition ✏0123 = +1 which,

by lowering the indices with the metric, implies ✏0123 = �1.
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Then we get for the last term

✏↵µ�⌫✏⇢µ�⌫k
0
↵k�p

⇢p0� = �2(p · k0 p0 · k � p · k p0 · k0), (1.702)

which means that the last term cancels against a similar term in the rest of the expression.

Thus, using the kinematic relations q2 = 4E2 and p · k0 = p0 · k = E2(1 + cos ✓), we get

|M|2|pol =
16e4

(q2)2
p · k0 p0 · k = e4(1 + cos ✓)2. (1.703)

Finally, we have found that the high energy approximation of the polarised di↵erential

cross section for this process is (in the CM frame)

✓
d�

d⌦

◆
(e�

R
e+
L
! µ�

R
µ+
L
)|CM, pol =

↵2

4E2
CM

(1 + cos ✓)2, (1.704)

where ↵ = e
2

4⇡ is the fine structure constant.

Similarly, we get for the same process but with reversed helicities for the out-going

particles ✓
d�

d⌦

◆
(e�

R
e+
L
! µ�

L
µ+
R
)|CM, pol =

↵2

4E2
CM

(1� cos ✓)2, (1.705)

which can be understood to arise from letting the µ� in the last case exit in the direction

of the µ+ in the previous case (computed above) but keeping its spin direction. This will

flip the helicities for both out-going particles.

Then using the fact that QED is parity invariant we may flip all four helicities simul-

taneously in both the results above which gives
✓
d�

d⌦

◆
(e�

R
e+
L
! µ�

R
µ+
L
)|CM, pol =

✓
d�

d⌦

◆
(e�

L
e+
R
! µ�

L
µ+
R
)|CM, pol, (1.706)

and ✓
d�

d⌦

◆
(e�

R
e+
L
! µ�

L
µ+
R
)|CM, pol =

✓
d�

d⌦

◆
(e�

L
e+
R
! µ�

R
µ+
L
)|CM, pol. (1.707)

We can now check that by summing and averaging over out-going and in-coming he-

licities, respectively, we do obtain the same result as in the previous section:

✓
d�

d⌦

◆
(e�e+ ! µ�µ+)|CM, unpol = (

1

2
)2⌃all four pol results above =

↵2

4E2
CM

(1 + cos2 ✓).

(1.708)

To summarise, we have found above that the trick of inserting projection operators

to make it possible to sum over spin directions and thus use completeness relations also

worked for the out-going µ particles. This fact follows since the u and v spinors used for the

µ particles are valid for general momenta. They were shown in Chapter 3 to be derivable

by a Lorentz transformation from the rest frame. To demonstrate even more explicitly that
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these u and v spinors are the correct ones to use we can derive M directly in this high

energy limit and verify this fact.

To do this we return to (1.687) above

usR(p) := PRu
s(p) =

1

2
(1 + �5)us(p) =

p
2E

 
0

⇠1

!
=

p
2E

0

BBB@

0

0

1

0

1

CCCA
. (1.709)

To compute M(e�
R
e+
L
! µ�

R
µ+
L
) we need v̄s

0
R
(p0)�µPRus(p) and thus the explicit form of vs

R
:

vsR(p) := PRv
s(p) =

1

2
(1 + �5)vs(p) =

p
2E

 
0

�⇠2

!
=

p
2E

0

BBB@

0

0

0

�1

1

CCCA
. (1.710)

The reason for this form of the v spinor is that the e+ particles is left-handed and moves

in the negative ẑ-direction and hence its spin is pointing in the positive ẑ-direction (i.e.,

the two e± particles have s = +1 together). Since this is an anti-particle it is therefore

described by ⇠2 instead of ⇠1. The minus sign in vs
R
(p) above appears already in the

definition of the v spinor.

Using these results we see that

v̄s
0

R(p
0)�µPRu

s(p) = 2E(0, 0, 0,�1)

 
0 1

1 0

! 
0 �µ

�̄µ 0

!
0

BBB@

0

0

1

0

1

CCCA
= 2E(0,�1)�µ

 
1

0

!
.

(1.711)

Thus the Lorentz vector that is the result of this calculation reads (as in Chap 1)

v̄s
0

R(p
0)�µPRu

s(p) = �2E

0

BBB@

0

1

i

0

1

CCCA
. (1.712)

It is now possible to perform an active rotation of this Lorentz vector around the ŷ-

direction to make it lie in the xz-plane pointing in the direction making an angle ✓ with

the z axis. This space rotation is given by the following Lorentz matrix

⇤µ
⌫ =

0

BBB@

1 0 0 0

0 cos ✓ 0 sin ✓

0 0 1 0

0 � sin ✓ 0 cos ✓

1

CCCA
. (1.713)
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Applying this to the previous Lorentz vector we get its form when rotated to the ✓ direction

as appropriate for the out-going µ� particle:
0

BBB@

0

1

i

0

1

CCCA
!

0

BBB@

0

cos ✓

i

� sin ✓

1

CCCA
. (1.714)

In the expression for iM derived above we see that we need

ū(k)�µv(k0) = (v̄(k0)�µu(k))? = �2E

0

BBB@

0

cos ✓

�i

� sin ✓

1

CCCA
, (1.715)

which implies that

M(e�
R
e+
L
! µ�

R
µ+
L
) =

e2

q2
(v̄(p0)�µu(p))gµ⌫(ū(k)�

⌫v(k0)) = �4E2 e
2

q2
(1 + cos ✓), (1.716)

which after using the kinematic relations becomes

M(e�
R
e+
L
! µ�

R
µ+
L
) = �e2(1 + cos ✓). (1.717)

We therefore find the same |M|2 as when we used the projection operator trick above.

Comment: The manipulations with the projection operators above and the results ,

i.e., moving them from the u spinor to the v spinor and find that they stay the same, have

a direct analogue in terms of the QED Lagrangian. Let us consider the possibility for a

spin 1/2 particle described by a Dirac, Weyl or Majorana spinor, to have electric charge

and/or non-zero mass. To answer this we have to check if the interaction term and mass

term can exist in each of these cases. In the case of Dirac spinors we know that both exist

(i.e., are not identically zero):

Dirac : Lint = �e ̄�µ Aµ 6= 0, Lmass = m ̄ 6= 0. (1.718)

For Weyl spinors this is no longer the case. Here we refer to a situation where only one of

 L or  R exist40

Weyl : Lint = �e ̄�µ Aµ 6= 0, Lmass = m ̄ = 0. (1.719)

This is clear since as we saw in the computation of the polarised cross section above the

interaction term is non-zero. The mass term term on the other hand couples always  L to

 R and this vanishes if only one of the appear in the theory. Finally, for Majorana spinors

we have

Majorana : Lint = �e ̄�µ Aµ = 0, Lmass = m ̄ 6= 0. (1.720)

The first result follows from the fact that C�µ is a symmetric matrix.

Exercise: Show this!
40Or that they are in di↵erent representations of some gauge group so that the product  L R cannot be

used in the Lagrangian in either of the two terms we consider here.
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