
1.12.4 Crossing symmetry

To understand what crossing symmetry is we consider first the scattering e�µ� ! e�µ�

which we will later compare to the one discussed above, that is e�e+ ! µ�µ+. Since both

of these come from the same second order term in the QED perturbation theory, that is
1
2

R
d4z1HI(z1)

R
d4z2HI(z2), there should be some kind of relation between their scattering

amplitudes.

So let us start by considering the process e�µ� ! e�µ� which is given by the Feynman

diagram

p1
q

DF

p02p01

p2
e�

µ�e�

µ�
. (1.721)

Note that this diagram is quite di↵erent from the one we have discussed so far for the

scattering e�e+ ! µ�µ+. Recall that time is pointing upwards in these Feynman diagrams.

Using the Feynman rules in QED, this diagram gives the scattering amplitude

iM(e�µ� ! e�µ�)

= i
e2

q2

⇣
ūs

0
1(p01)�

µus1(p1)
⌘⇣

ūs
0
2(p02)�µu

s2(p2)
⌘
|q=p1�p

0
1
. (1.722)

The unpolarised |M|2 obtained from this expression is

|M(e�µ� ! e�µ�)|2
unpol

=
e4

4(q2)2
tr
⇣
(/p

0
1
+m(e))�

µ(/p1 +m(e))�
⌫

⌘
tr
⇣
(/p

0
2
+m(µ))�µ(/p2 +m(µ))�⌫

⌘
. (1.723)

This result can be compared to |M(e�e+ ! µ�µ+)|2
unpol

that we have computed previously

|M(e�e+ ! µ�µ+)|2
unpol

=
e4

4(q2 + i✏)2
tr
⇣
�µ(/k +m(µ))�⌫( /k

0 �m(µ))
⌘
tr
⇣
�µ(/p0 �m(e))�

⌫(/p+m(e))
⌘

(1.724)

These two expressions are exactly equal to each other if the following substitution is made:

p ! p1 p0 ! �p01 k ! p02 k0 ! �p2. (1.725)

This is a nice observation since it may save us the work needed to do the gamma traces

for the new diagram above: we can just use the substitution directly in the final result

for |M(e�e+ ! µ�µ+)|2
unpol

and obtain the result for |M(e�µ� ! e�µ�)|2
unpol

after the

traces are done.
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However, the kinematics for e�µ� ! e�µ� is entirely di↵erent from the previous case

e�e+ ! µ�µ+ so this must be analysed again (it does not follow from crossing symmetry).

In the center of mass (CM) system we now have for the in-coming particles (again in the

high energy limit where we can set m(e) = 0) withk > 0

pµ1 = (k, kẑ), pµ2 = (E,�kẑ), where E =
q
k2 +m2

(µ). (1.726)

For the out-going particles we have, with k in some general direction

p0µ1 = (k,k), p0µ2 = (E,�k), where E =
q
k2 +m2

(µ). (1.727)

Note that E and k = |k| are the same for both in-coming and out-going momenta in the

CM frame.

These momenta give directly (using the notation k := k and with k · ẑ = k cos ✓)

p1·p2 = p01·p02 = kE+k2, p1·p02 = p01·p2 = kE+k2 cos ✓, p1·p01 = k2�k2 cos ✓, p2·p02 = E2�k2 cos ✓.

(1.728)

It is perhaps even more interesting to check what q2 is. In the limit m(e) = 0 we find:

q2 = (p1 � p01)
2 = p21 + p021 � 2p1 · p01 = 0 + 0� 2p1 · p01 = �2k2(1� cos ✓). (1.729)

Doing the traces over gamma matrices this gives the following |M|2 for the e�µ�

scattering, for the unpolarised case,

|M|2|unpol =
2e2

k2(1� cos ✓)2

⇣
(E + k)2 + (E + k cos ✓)2 �m2

[µ)(1� cos ✓)
⌘
. (1.730)

Inserting this into the general di↵erential cross section formula for 2 ! 2 scattering

(
d�

d⌦
)|CM = (1.731)

Using the following translation

EA ! k, EB ! E, |p1| ! k, |vA � vB| = | k
A
z

EA

� kBz
EB

| ! |k
k
+

k

E
| = 1 +

k

E
, (1.732)

the di↵erential cross section in our e�µ� ! e�µ� case becomes

(
d�

d⌦
)|CM =

1

2k2E

1

1 + k

E

k

(2⇡)24(E + k)
|M(e�µ� ! e�µ�)|2

unpol
(1.733)

=
↵2

2k2(E + k)2(1� cos ✓)2

⇣
(E + k)2 + (E + k cos ✓)2 �m2

(µ)(1� cos ✓)
⌘
. (1.734)

For enough high energies where also m2
(µ) can be neglected, ECM = 2k and this result

reduces to

d�

d⌦
(e�µ� ! e�µ�)|CM,E>>m(µ)

=
↵2

2E2
CM

(1� cos ✓)2
�
4 + (1 + cos ✓)2

�
(1.735)

– 139 –



It is interesting to look at this result close to the forward direction, i.e., as ✓ ! 0: using

cos ✓ = 1� 1
2✓

2 + ... we get

d�

d⌦
(e�µ� ! e�µ�)|CM ! ↵2

2E2
CM

1
4✓

4
(4 + 4) =

16↵2

E2
CM

1

✓4
. (1.736)

This result is characteristic of Coulomb scattering (i.e., elastic scattering involving only

electric forces) and comes from the special kinematics of this process:

p1

q

DF

p02p01

p2

e�

µ�
e�

µ�

/ 1

q2
) (

d�

d⌦
)CM / 1

(q2)2
, (1.737)

together with the kinematics relation

q2 = �2p1 · p01 = �2k2(1� cos ✓) ⇡ �k2✓2. (1.738)

The physics here can be expressed as the virtual photon with momentum q is almost on-

shell close to the forward direction ✓ = 0 where the di↵erential cross section goes as 1
✓4
.

This is known in physics since 1911 as Rutherford scattering.

After having discussed the two di↵erent processes e�µ� ! e�µ� and e�e+ ! µ�µ+

and there crossing relation we should now try to understand the origin of this crossing

symmetry. Consider a general AB ! 12 process in QED which from first principles is given

in perturbation theory by (note the particle type associated to the current jµ =  ̄�µ in

each vertex)

h12|T
✓
1

2
(�ie

Z
d2z1 ̄(e)�

µ (e)Aµ)(�ie

Z
d2z2 ̄(µ)�

⌫ (µ)A⌫)

◆
|ABi, (1.739)

where the contraction of the two vector potentials gives the photon propagator which will

not play a role in the discussion below. Assume now that particle A is the in-coming

electron that appears in both the processes we are looking at here. Thus

|Ai =
p
2EAa

†s
pA

|0i. (1.740)

If we now want to find the possible ways to contract the interaction term above for the

electron with this in-coming state |Ai there are two ways to do it. They correspond to

the two directions the electron fermion-line in the Feynman diagram can take: Either is

continues ”backwards” and contracts with an in-coming positron as in the e�e+ scattering

case , or in contracts with an electron in the out-going state as in the e�µ� scattering.

These possibilities follow directly from splitting  into + and � parts: at the interac-

tion point z1 we have

( ̄+ + +  ̄� � +  ̄+ � +  ̄� +)|Ai. (1.741)
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If we consider instead e�e� scattering there is also a third kind of Feynman diagram

where the two out-going legs are crossing each other which leads to the photon momentum

e�e� : q = p1 � p02. (1.745)

These three cases are usually referred to the s, t, and u channel, respectively, and expressed

in terms of the Mandelstam variables with the same names:

s := (p1 + p2)
2, t := (p1 � p01)

2, u := (p1 � p02)
2. (1.746)

The virtue of these definitions is that crossing symmetry can be used simply by swap-

ping some of these variables for others. An example is provided by the diagrams we

discussed above. In terms of the Mandelstam variables we find

|M(e�e+)|2
unpol

=
8e4

s2

✓
(
t

2
)2 + (

u

2
)2
◆
, (1.747)

while

|M(e�µ�)|2
unpol

=
8e4

t2

⇣
(
s

2
)2 + (

u

2
)2
⌘
. (1.748)

Another useful feature of these Mandelstam variables is their sum: (renaming the

momenta as p1, p2 for the in-coming and p3, p4 for the out-going and using p2
i
= m2

i
for

i = 1.2.3.4)

s+ t+u = (p1+p2)
2+(p1�p3)

2+(p1�p4)
2 = ⌃im

2
i +2p1 ·p2+p21�2p1 ·p3+p21�2p1 ·p4

= ⌃im
2
i + 2p1(p2 � p3 � p4) + 2p21 = ⌃im

2
i , (1.749)

where we have used momentum conservation in the last step.
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Now we have to face the issue of squaring this expression to get the cross section. The

fermionic part of it we are by now familiar with and we know how to compute its absolute

square using the completeness relations for us and vs (polarisation) spinors. However, also

the photon polarisation tensors in the above expression for iM must be handled and their

absolute square computed. The problem is that ✏µ is really ✏�µ where the index � runs over

the number of independent degrees of freedom of the photon, i.e., � = +,� for the two

circular polarised states of the photon. The polarisation tensor (which is a vector here) ✏�µ
is thus not a square matrix and hence one cannot write down a completeness relation for

it! This issue is a direct e↵ect of the gauge invariance of the Maxwell theory.

As we have discussed before gauge invariance makes it possible to choose the Lorentz

gauge @µAµ = 0 as a condition on the vector potential Aµ. Using this condition the

Maxwell’s equation becomes a ⇤ equation. Also the remaining gauge transformation pa-

rameter after imposing the Lorentz condition is given by the solutions of ⇤⇤ = 0, that

is, waves. Thus we can restrict the vector potential one step further by e.g. choosing the

additional condition A0 = 0. Then the Lorentz condition reduces to r ·A = 0 known as

the Coulomb gauge. Note that the Feynman propagator is derived in the Lorentz gauge

and therefore propagates all four components of Aµ.

In momentum space this means that the polarisation tensor for the vector potential

will satisfy, in the Coulomb gauge,

✏�µ(p) = (0, ✏�), where p · ✏� = 0. (1.757)

Clearly the vector potential will only contain two independent degrees of freedom so � takes

on only two values, e.g., +,� for right and left polarised photons. This becomes clear if

the photon is traveling in the positive ẑ-direction. Then the two circular polarisations are

given by ✏±µ = 1p
2
(0, 1,±i, 0). This three-dimensional ✏� is normalised ✏�

0 · ✏� = ���
0
.

These two ✏� vectors can easily be extended by adding a third one, also normalised to

one, ✏3 := p
|p| . This way we obtain a completeness relation in the three space directions

(i, j = 1, 2, 3)

⌃↵=+,�,3(✏
↵

i )
?✏↵j = �ij . (1.758)

This completeness relation can then be used in the space part of the above computation

of the square |M|2 if we write it as

⌃�=+,�(✏
�

i )
?✏�j = �ij �

pipj
|p|2 . (1.759)

Finally, we must now extend this completeness relation valid in space to the whole of

Minkowski, i.e., add also a time-like vector ✏0µ. However, this is not possible if we want to

find a Lorentz covariant completeness relation of the kind

⌃A=(0,+,�,3)(✏
A

µ )
?✏A⌫ = �gµ⌫ . (1.760)

The reason this is impossible is that for this relation to work the added time-like vector

must have a negative absolute square!
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To be able to discuss this in terms of scattering amplitudes we express a general

Feynman diagram with an external out-going photon with polarisation � as

iM := iMµ✏�?µ . (1.761)

Squaring this to get the unpolarised cross section means that we sum over polarisations

which gives

⌃�|M|2 := ⌃�|Mµ✏�?µ |2 = ⌃�✏
�?

µ ✏
�

⌫Mµ?M⌫ . (1.762)

With the � sum running over two values (in the xy plane as above for photons moving in

the z-direction) this becomes

⌃�|M|2 = |M1|2 + |M2|2. (1.763)

This result is correct but not Lorentz covariant which makes it less useful. In order to keep

manifest Lorentz invariance we must insist on doing the replacement

⌃�=+,�✏
�?

µ ✏
�

⌫ ! �gµ⌫ . (1.764)

If we do this we must check what goes wrong: clearly now

⌃�|M|2 = |M1|2 + |M2|2 ! �gµ⌫Mµ?(k)M⌫(k) = �|M0|2 + |M1|2 + |M2|2 + |M3|2,
(1.765)

so we now have two terms that are unphysical and unwanted, the 0 and 3 component terms.

The first one is even appearing with a minus sign which is a disaster for unitarity.

However, there is a way out of this problem. Consider again Mµ and note that the µ

is connected to the photon line leaving the Feynman diagram from a fermion line due to

the interaction term in QED:

Lint = �e ̄�µ Aµ := �ejµAµ. (1.766)

This means that, doing all the contractions except the ones involving the spinors in the

current of the z1 vertex, jµ =  ̄�µ ,

Mµ =

Z
d4zeik·zhf |jµ|ii, (1.767)

where i refers to all the in-going particles and f to all the out-going ones. The conservation

of the current @µjµ = 0 in the Fourier transformed version becomes kµjµ = 0. Hence each

external photon line must satisfy the

Ward identity : kµMµ(k) = 0. (1.768)

This is usually expressed by saying that if one replaces any photon polarisation tensor in

a scattering amplitude by its momentum, i.e., ✏µ(k)Mµ ! kµ(k)Mµ it must vanish.

That the Ward identity solves the problem above with the unwanted |M|2 terms follows

since (again with the photon moving in the z-direction, kµ = (k, 0, 0, k))

kµMµ(k) = kM0 � kM3 = 0 ) M0 = M3, (1.769)
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which implies that the two unwanted terms cancel each other out in the covariant |Mµ|2
above!

To see the Ward identity at work we can just look at the interaction vertex itself. If

we consider the case with an out-going photon and an in-going and out-going electron we

have from the Feynman rules

iM = ✏µ?(k)ū
s
0
(p0)(�i�µ)us(p)|k=p�p0 . (1.770)

To check the Ward identity we must therefore compute

kµ(k)ū
s
0
(p0)(�i�µ)us(p)|k=p�p0 = �iūs

0
(p0)(�µ)(pµ � p0µ)u

s(p)

= �iūs
0
(p0)(/p

µ
� /p

0
µ
)us(p) = �iūs

0
(p0)(m�m)us(p) = 0, (1.771)

by using the Dirac equation for both u and ū.

Having understood how the Ward identity makes a Lorentz invariant expression pos-

sible in cases like this we can now continue and square the amplitude for the unpolarised

Compton scattering process. We get using the explicit form of the amplitude give above

|M|2
unpol

= (
1

2
)2⌃s,s0 |M|2

pol
=

e4

4
gµ⇢g⌫�⇥

tr

 
(/p

0 +m)(
�µ/k�⌫ + 2�µp⌫

2p · k +
�⌫/k0�µ � 2�⌫pµ

2p · k0 )(/p+m)(
��/k�⇢ + 2�⇢p�

2p · k +
�⇢/k0�� � 2��p⇢

2p · k0 )

!
.

(1.772)

There is a fair amount of gamma algebra here but if one writes out each non-zero

term separately and use an identity we have discussed before, namely �µ�⌫�µ = �2�⌫ this

algebra is not so bad. One finds at the end

|M|2
unpol

= 2e4
✓
p · k0
p · k +

p · k
p · k0 + 2m2(

1

p · k � 1

p · k0 ) + 4m2(
1

p · k � 1

p · k0 )
2

◆
. (1.773)

Compton scattering is typically an experiment where photons are hitting electrons at

rest so we should get the kinematics in the Lab frame:

e� : pµ = (m, 0, 0, 0, ), kµ = (!,!ẑ), p0µ = (E0,p0), k0µ = (!0,!0 sin ✓, 0,!0 cos ✓).

(1.774)

Note that here the out-going particles (e�, �) can leave in any directions unrelated to each

other. The kinematic relations are now easy to obtain:

p · k = m!, p · k0 = m!0. (1.775)

We also need to express !0 in terms of ! and the angle ✓. This is done by rewriting m2 as

follows

m2 = (p0)2 = (p+ k � k0)2 = p2 + 2p · k � 2p · k0 � 2k · k0 = m2 + 2m(! � !0)� 2!!0(1 + cos ✓),
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