
1.13 Radiative corrections and renormalisation

1.13.1 Reading instructions for PS on Radiative corrections and renormalisa-

tion

Canvas: Lectures 15 - 20 will appear in one Doc-file (or maybe two) which will be updated

with the latest lecture just before it starts. Also this page with reading instructions will

be updated after each lecture to make it as accurate as possible.

We will study parts of chapters 6, 7 and 10 but jump back and forth in this material.

The lectures 15 to 20 will define exactly what is important for this course. In particular

these lectures will give the order in which to read this material. I advice you to follow this

order at least the first time you go through it. It will be done in PS as follows:

1. Go back to Chap 1 and read pages 8 - 12 again, in particular the part called ”Em-

bellishment and Questions” and the comments connected to Figure 1.4.

2. Get more input on this QED discussion by reading Chap 6, Intro on p. 175 - 176.

3. To get into the subject of loop corrections and how to handle them when they are

infinite we leave QED for now and turn to �4 theory which is much simpler than QED

in this respect. Therefore we jump to Chap 10 where we read first the Intro, page 315,

and turn to sect. 10.2 which we will study in all details (skipping sect. 10.1 for now).

However, even sect. 10.2 will not be done in the order presented in PS: Instead we start

from mid-page 326 ”One-loop Structure of �4 theory” and return to the first part of sect.

10.2 after that. In section 10.2 the text refers back to chapter 7 a few times: the only thing

needed from chapter 7 at this point is the stu↵ on ”Dimensional regularisation” pages 249

- 251. You may also want to consult PS about Feynman parameters in Chap 6, pages end

of 189 and 190, but the lectures will contain what you need.

4. Read then sect. 10.1, starting at eq. 10.12, pages 321 - 322: Counting divergencies

in �4 theory.

5. Then study sections 10.1 and 10.3 (the rest of chapter 10 is not included).

6. read the Intro pages 175 - 176 again (sect. 6.1 is not included)

read sect 6.2 and 6.3 (sections 6.4 and 6.5 are not included)

7. Intro of Chap 7 and section 7.1. (Section 7.2 is not included)

Section 7.3: read pages 230 - 232 (the rest is not included)

Section 7.4: read page 238 (the rest is not included)

Section 7.5: This whole section is very important!
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minus signs appear since p3 and p4 are out-going momenta.

Our next task is to analyse V (p2), that is, the four-dimensional momentum integral

V (p2) :=
i

2

Z 1

�1

d4k

(2⇡)4
1

k2 �m2 + i✏

1

(k + p1 + p2)2 �m2 + i✏
. (1.788)

This analysis is hard to do directly in the above integral so a very useful trick is to Wick

rotate! That is, we can let k0 become complex and then turn the integral over the real

part of k0 (appearing in the integral above) into an integral along the imaginary k0 axis

by letting k0 ! ik0. This is called a Wick rotation and can be viewed as a rotation of

the real axis into the imaginary one without passing any poles in the Feynman propagators.

The integral has now become Euclidean, with k2 replaced by �k2
E
, and we can therefore

introduce polar coordinates in this four-dimensional Euclidean momentum space by

Z 1

�1

d4kE
(2⇡)4

=

Z 1

0
dkk3

Z

S3
d⌦4, (1.789)

where k is now the radial coordinate in momentum space. The angular integral is over the

unit radius 3-dimensional sphere S3.

It is then a simple matter to check how V (p2) behaves for large momenta, i.e., in the

UV limit. Introduce a large cut-o↵ ⇤ in momentum space as follows

V (p2) /
Z ⇤

dk k3
1

k2
1

k2
, (1.790)

where we have taken ⇤ big enough so that masses and external momenta pi can be neglected

in the denominator of V (p2). Then

V (p2) /
Z ⇤

dk k3
1

k2
1

k2
/

Z ⇤ dk

k
/ log⇤ ! 1 as ⇤ ! 1, (1.791)

This is our first important result: the integral in V (p2) is divergent!

The above discussion and divergence analysis of V (p2) will force us to perform the

following three steps:

1. Regularisation: This refers to the introduction of any kind of parameter (like ⇤

above) that can be used to define the way the integral approaches infinity when the pa-

rameter is taken to infinity (or to zero if that is how the divergence is emerging).

2. Renormalisation: This refers to the procedure required to relate the parameters

in the Lagrangian to the measured values of these parameters. This step will also involve

the fields themselves. The renormalisation needed here is multiplicative as we will see later.
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3. Renormalisability: When the previous step is under control one can start check-

ing if the theory is renormalisable. This is done by counting the divergent diagrams and

comparing that number to the number of parameters in the Lagrangian (including the

fields).

1. Regularisation: There are several ways to make a divergent integral convergent

and physics must of course be independent of which one we use. This will be clear below.

Here we will discuss three often used regularisations:

a) Cut-o↵: This is the one used above, that is after Wick rotation one introduces the

cut-o↵ parameter ⇤ by Z 1

�1
d4kE !

Z ⇤

dk k3
Z

d⌦, (1.792)

which cuts of the integral at some large momentum ⇤ which is taken to infinity at the

end. Note that this is an SO(4) invariant procedure (corresponding to Lorentz invariance

before Wick rotation) but it destroys gauge invariance in QED since in momentum space

a gauge transformation reads �Aµ = ipµ↵ and hence depends on the momentum. Thus it

also a↵ects unitarity.

b) Pauli-Villars: Here one introduces a heavy ghost particle of the same spin as the

one in the divergent loop and then takes the mass M to infinity. Explicitly

DF =
i

k2 �m2 + i✏
! i

k2 �m2 + i✏
� i

k2 �M2 + i✏
, (1.793)

where the minus sign is the origin of the name ghost and heavy refers to the large value of

M . This trick is Lorentz invariant and gauge invariant if applied to a photon propagator.

It is not unitary until after the limit M ! 1 is taken. The key point here is that for

very large momenta where the masses can be neglected the two integrals cancel each other

making the sum of the two terms UV finite. Of course, if M ! 1 is taken first the second

term is zero and we are back to the usual propagator.

c) Dimensional regularisation: Very nice to work with but physically a bit obscure

perhaps. Here one generalises the momentum integrals to a general dimension d which

does not even have to be integer:

d = 4 ! d = 4� ✏ where ✏ ! 0. (1.794)

d) Lattice regularisation: Turning spacetime into a lattice makes it possible to compute

certain quantities exactly. However, then the lattice must be removed by letting the lattice

spacing go to zero which does not always work. Certain kind of chiral theories are also

impossible to treat with this method. This will not be discussed any further in this course

(see PS sect. 22.1).

The regularisation procedure raises a number of questions and it is therefore interest-

ing to note that there are theories in four space-time dimensions which do not need this
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step at all:

Field theory: Super-Yang-Mills with maximal number of supersymmetries known as

N = 4 SYM41. After this theory was discovered other less supersymmetric YM-theories

have been found that are also finite.

String theory: Here there are no UV infinite diagrams at all at any loop order.

We now return to the integral V (p2) defined above which we found to be infinite. In

order to compute it exactly (before Wick rotation) we need another trick due to Feynman:

Introduce a Feynman parameter x by the following integral

1

AB
=

Z 1

0
dx

1

(xA+ (1� x)B)2
. (1.795)

This is easily checked:

RHS =

✓
� 1

xA+ (1� x)B
⇥ 1

A�B

◆
x=1

x=0

= � 1

A�B

✓
1

A
� 1

B

◆
= � 1

A�B
⇥B �A

AB
=

1

AB
.

(1.796)

Introducing this Feynman parameter into V (p2) while identifying A with k2 �m2 and

B with (k + p)2 �m2 we get (the +i✏ is not relevant here)

V (p2) =
i

2

Z 1

0
dx

Z
d4k

(2⇡)4
1

(x(k2 �m2) + (1� x)((k + p)2 �m2))2
. (1.797)

The expression in the denominator, often denoted D, can now be simplified somewhat

(compare to PS p. 327):

D = x(k2 �m2) + (1� x)((k + p)2 �m2) = k2 �m2 + (1� x)(p2 + 2k · p). (1.798)

Now we change integration variables from k to l = k + (1 � x)p. This gives, still in

Minkowski,

V (p2) =
i

2

Z 1

0
dx

Z
d4l

(2⇡)4
1

(l2 ��)2
, where � = m2 � x(1� x)p2. (1.799)

This is a nice result since

1) V depends only p2, not linearly on pµ as before,

2) the l-integrand is independent of angles ) the Euclidean version of the integral is rather

easy to compute exactly.

To compute V (p2) exactly we first Wick rotate: l0 := i l0
E
which implies

l0 := i l0E ) l2 = �l2E , d4l = i d4lE . (1.800)

41This theory was proven finite to all loop orders using superspace Feynman diagrams in the following

papers (in chronological order) L. Brink, O. Lindgren and B.E.W. Nilsson, Nucl. Phys B212 (1983), S.

Mandelstam, Nucl. Phys B213 (1983) and L. Brink, O. Lindgren and B.E.W. Nilsson, Phys. Lett. B123

(1983).
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Therefore the Euclidean version of V (p2) is

V (p2)E = �1

2

Z 1

0
dx

Z
d4lE
(2⇡)4

1

(l2
E
+�)2

, where � = m2 � x(1� x)p2. (1.801)

Here we should note that pµ is still in Minkowski space although we have Wick rotated in

the integration variable l0 to be able to perform the integral as swiftly as possible.

The next step is therefore to do the angular integrals. Here we will take another

important step and get the result in any dimension d and then let d be any real positive

number. How this is possible will become clear below.

First we split the whole Euclidean momentum integral into a radial part and an angular

part by Z
ddlE =

Z
dl ld�1

Z

Sd�1
d⌦d, (1.802)

which is just a direct generalisation of the cases d = 2 and d = 3. The radial coordinate

in Euclidean momentum space is denoted l (without any index E) and Sd�1 is the d� 1-

dimensional unit sphere.

The angular part can be done as follows. Recall that
R1
�1 dx e�x

2
=

p
⇡ and hence,

for integer values of d,

⇡
d
2 = (

p
⇡)d =

Z
ddx e�x

2
1�x

2
2�....�x

2
d =

Z 1

0
dr rd�1e�r

2
Z

d⌦d. (1.803)

But here we integral over the radial coordinate r is rather easily done by setting y = r2.

Then Z 1

0
dr rd�1e�r

2
=

1

2

Z 1

0
dy y

d
2�1e�y. (1.804)

This integral is quite remarkable since for d = 2 it becomes
Z 1

0
dy e�y = [�e�y]10 = 1. (1.805)

Denoting the integral �(d/2) for now we have �(1) = 1. By partial integrations one can

prove that

�(n+ 1) = n�(n). (1.806)

This is recursive and can be expressed as

�(n) = (n� 1)!, (1.807)

so this function is the standard Gamma function, here represented by the integral above.

However, the integral representation is not restricted to integer values of the argument

n so we can define the angular integral above for any dimension d even when d is not an

integer. Thus, for any real d, we have

Z
d⌦d =

2⇡
d
2

�(d2)
. (1.808)
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To check this result, recall that �(1/2) =
p
⇡ and thus �(3/2) = 1

2

p
⇡:

S1 :

Z
d⌦2 =

2⇡
2
2

�(22)
= 2⇡, S2 :

Z
d⌦3 =

2⇡
3
2

�(32)
=

2⇡
3
2

1
2⇡

1
2

= 4⇡. (1.809)

For the case we are interested in here, that is d = 4, we get

S3 :

Z
d⌦4 =

2⇡
4
2

�(42)
=

2⇡2

�(2)
= 2⇡2. (1.810)

Finally, we can summarise these results in the formula

Z
ddlE =

2⇡
d
2

�(d2)

Z 1

0
dl ld�1. (1.811)

1. Regularisation: Now we can compute the integrals that appear in these loop

corrections after Wick rotation:

Il =

Z 1

0
dl ld�1 1

(l2 +�)2
= (set y = l2) =

1

2

Z 1

0
dy y

d

2�1 1

(y +�)2
. (1.812)

Set now

x =
�

y +�
) dx = � � dy

(y +�)2
) dy

(y +�)2
= �dx

�
, (1.813)

and solving for y we get

x =
�

y +�
) y =

�

x
�� = �(

1

x
� 1) = �

1� x

x
. (1.814)

Using these relations to turn the integral into an x-integral we get

Il =
1

2

Z 1

0

dx

�
�

d

2�1x1�
d

2 (1� x)
d

2�1 =
1

2
�

d

2�2
Z 1

0
dx x1�

d

2 (1� x)
d

2�1. (1.815)

In the spirit of the integral representation of the � function above one can now also

express this integral in terms of � functions. The relation is provided by the following

definition of the Beta function B(↵,�):

B(↵,�) :=

Z 1

0
dx x↵�1(1� x)��1 =

�(↵)�(�)

�(↵+ �)
. (1.816)

Thus we have

Il =
1

2
�

d

2�2B(2� d

2 ,
d

2) =
1

2
�

d

2�2�(2� d

2)�(
d

2)

�(2)
. (1.817)

This is a very interesting result: it is divergent for d = 4 due to �(2 � d

2) = �(0) = 1.

In fact, by analytic continuation one can show that �(x) is finite for all real values of x

except at non-positive integer values. To define this divergence in the physics problem we

– 154 –



are looking at here, we let the dimension d become slightly less than 4, i.e. instead of using

d = 4 we insert d = 4� ✏. This gives

�(2� d

2) = �(
✏

2
) ⇡ 2

✏
+ � +O(✏), (1.818)

where we in the last step used a well-known expansion of the � function for small arguments.

The constant � is the Euler-Mascheroni constant � ⇡ 0.5772...

At this point we should return to the question how physics can be extracted from these

formulas. To do this we go back to the momentum integral in V (p2) which now is in d

dimensions, and in the limit ✏ ! 0 becomes

Z
ddlE
(2⇡)d

1

(l2 +�)2
|d=4�✏ =

1

(4⇡)2

✓
2

✏
� log�� � +O(✏)

◆
. (1.819)

There are a couple of steps before one finds this result. The derivation goes as follows:

Z
ddlE
(2⇡)d

1

(l2 +�)2
=

Z
d⌦d

(2⇡)d

Z 1

0
dl ld�1 1

(l2 +�)2
=

1

(2⇡)d
2⇡

d

2

�(d2)

1

2
�

d

2�2�(2� d

2)�(
d

2)

�(2)
.

(1.820)

This can be simplified a bit to, using also �(2) = 1,

Z
ddlE
(2⇡)d

1

(l2 +�)2
=

⇡
d

2

(2⇡)d
�

d

2�2�(2� d

2). (1.821)

To get the result quoted above we need not only the expansion of the last � factor given

above, but also to expand �
d

2�2 for small ✏: with d = 4� ✏ we get

�
d

2�2 = �� ✏

2 = e�
✏

2 log� = 1� ✏

2 log�+O(✏2). (1.822)

Multiplying these two expansions together and collecting the 1/✏ and the ✏ independent

terms gives the result above. Note that also the 2⇡ factors could have been expanded like

this and then contributed to the finite constant (momentum independent) terms. As will

be clear later such terms contain no physics information which is why we skipped those

terms here.

In fact, this is the point where we should stop and clarify where the physics information

come from in the above expression

Z
ddlE
(2⇡)d

1

(l2 +�)2
|d=4�✏ =

1

(4⇡)2

✓
2

✏
� log�� � +O(✏)

◆
. (1.823)

There are three kinds of terms here that survive the limit ✏ ! 0: The first divergent

one, the second finite but p2 dependent one, and the third one which is just a finite

constant. The renormalisation procedure to be discussed later when we fully understand

the regularisation step discussed here will show that all information about the physics is

contained in the log�(p2) term basically because of its p2 dependence.
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Having stated this fact we can continue to check if the other regularisation procedures

generate the same physics. So let us complete the calculation with the cut-o↵ parameter

⇤. Then we need to compute, for d = 4,

Il(⇤) =

Z ⇤

0
dl ld�1 1

(l2 +�)2
= (y = l2) =

1

2

Z ⇤2

0
dy y

d

2�1 1

(y +�)2

= (d = 4) =
1

2

Z ⇤2

0

dy y

(y +�)2
=

1

2

Z ⇤2

0
dy y@y(�

1

y +�
) =

1

2

Z ⇤2

0
dy

1

y +�
+
1

2

✓
� y

y +�

◆
|⇤2

0

=
1

2
log

⇤2 +�

�
� 1

2

⇤2

⇤2 +�
. (1.824)

In the limit ⇤ ! 1 this reduces to

Il(⇤ ! 1) = log⇤� 1

2
log�� 1

2
, (1.825)

and hence Z
ddlE
(2⇡)d

1

(l2 +�)2
|⇤!1 =

1

(4⇡)2
(� log�+ 2 log⇤� 1). (1.826)

Recalling the rule stated above about which term contains the physics information, namely

the one depending on p2, i.e. log�(p2), we find that the physics is the same as for dimen-

sional regularisation.

As a last case we also do the computation with Pauli-Villars regularisation. Thus, with

the mass dependence in �(m) = m2 � x(1� x)p2, we have

Il(M) =

Z 1

0
dl l3

✓
1

(l2 +�(m))2
� 1

(l2 +�(M))2

◆
(1.827)

which by setting y = l2 becomes

=
1

2

Z 1

0
dy y

✓
1

(y +�(m))2
� 1

(y +�(M))2

◆

=
1

2

Z 1

0
dy

✓
1

y +�(m)
� 1

y +�(M)

◆
� 1

2

✓
y

y +�(m)
� y

y ��(M)

◆ ���
1

0

= �1

2
log

�(m)

�(M)
= �1

2
log�(m) +

1

2
log�(M). (1.828)

Thus Z
ddlE
(2⇡)d

1

(l2 +�)2
|M!1 =

1

(4⇡)2
(� log�(m) +�(M)), (1.829)

which once again provides the same physics information stored in the term � 1
(4⇡)2 log�(m)

while the divergence is captured by the other term 1
(4⇡)2 log�(M).

We now turn to the issue of renormalisation which will explain the above statement about

where to find the physics information after regularisation.

2. Renormalisation:
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1.1.2 Renormalisation in �4 theory

Consider again the Lagrangian for �4 theory:

L =
1

2
@µ�@

µ��
1

2
m2�2

�
�

4!
�4. (1.47)

As already mentioned the whole issue of renormalisation concerns the following question:

Question: What exactly do the parameters m and � actually mean when the Lagrangian

is used to make predictions for an experiment? As we will see later this question also

involves the field, here just �.

Idea: Choose the parameters in L so that the observable quantities take their physi-

cal (finite) values.

How is this done? Considered again the scattering process discussed above

iM(12 ! 34) = �i�+ (�i�)2(iV (s) + iV (t) + iV (u)) + ... (1.48)

where, with � = m2
� x(1� x)p2,

V (p2) = �
1

32⇡2

Z 1

0
dx

✓
2

✏
� � + log 4⇡ � log(m2

� x(1� x)p2)

◆
(1.49)

and the dots indicate an infinite series of higher loop terms (at higher and higher order in

the coupling constant �).

Note now the following facts:

1) � is not the physical coupling constant �phys measured in experiments since that value

is determined by the whole perturbation series, i.e.,

iM = �i�phys(p
2), (1.50)

which does depend on p2, the momentum at which the scattering experiment is performed.

This p2 dependence is seen in experiments so it is not surprising that also the theory, via

V (p2), indicates that p2 plays a role here. We will state this fact as

�measured = �phys(p
2). (1.51)

We emphasise here that the Lagrangian L(x) can NOT contain parameters that depend

on momenta since that would make it non-local or worse.

2) Our intuition that coupling constants are constant come from experiments at very low

energies and therefore it is natural to define ”the coupling constant” � at zero 3-momentum

p = 0, called the subtraction point, by

� := �phys(p
µ = (m, 0, 0, 0)). (1.52)
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Call this value m2, that is by definition p2 = m2. This is the mass we obtain from an

experiment and this value of p2 plays the role of subtraction point in this case.

2) Let us now expand M(p2) around this physical value m2:

M(p2) = M(m2) + (p2 �m2)

✓
d

dp2
M(p2)

◆
|m2 + ... (1.58)

Inserting this expansion into the propagator above gives

i

p2 �m2
0 �M(p2) + i✏

=
i

p2 �m2
0 � (M(m2) + (p2 �m2)( d

dp2
M(p2))|m2 + ...) + i✏

.

(1.59)

This means that for p2 close to the pole p2 �m2
0 �M(m2) = p2 �m2 and the propagator

reads
i

(p2 �m2)(1� d

dp2
M(p2))|m2

:=
iZ

p2 �m2
, (1.60)

where we can identify the field renormalisation constant Z as

Z :=

✓
1�

d

dp2
M(p2)|m2

◆�1

. (1.61)

Since the exact propagator is really the two-point function h⌦|T�exact(x)�exact(y)|⌦i

we want it to behave as i

p2�m2+i✏
close the pole where m is the physical mass. It is therefore

convenient to define a new field �r, the renormalised field, by rescaling the field in the

Lagrangian � as follows

� =
p

Z�r. (1.62)

The Lagrangian is then written as

L =
1

2
Z@µ�r@

µ�r �
1

2
Z m2

0�
2
r �

�0

4!
Z2 �4

r , (1.63)

and now the key point about this version of the Lagrangian is that the exact propagator

close to the pole is precisely

h⌦|T�r(x)�r(y)|⌦i =
i

p2 �m2 + i✏
+ ... (1.64)

Now one could start doing perturbation theory using the standard Feynman rules but

expressed in terms of the new renormalised field �r and the bare constants m0 and �0.

However, there is a much more convenient way to view this Lagrangian which emerges if

one defines the following �-parameters:

�Z := Z � 1, �m := m2
0Z �m2, �� := �0Z

2
� �. (1.65)

Expressing the Lagrangian in terms of these � parameters and the physical quantities m, �

and the field �r, instead of the bare parameters m0 and �0 together with � has no physical
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which gives the scattering amplitude

iM(12 ! 34) = �i�+ (�i�)2(iV (s) + iV (t) + iV (u))� i��. (1.69)

The first thing to do is to determine the constant (i.e., p2 independent) value of ��. This

is done by demanding that at the subtraction point, which in case we choose to be p1 =

p2 = 0, the counter term cancels the one-loop terms so that

M(12 ! 34)|subt.point = �i�. (1.70)

In other words: at the subtraction point the physically measured value of the coupling

constant, i.e. M(12 ! 34)|subt.point, is the value we give the coupling constant, �, in the

Lagrangian.

With this choice of subtraction point we have s = (p1 + p2)2 = 4m2. Then since

s + t + u = 4m2 we also have that t + u = 0 which implies E3 + E4 = 2m, and thus also

that p3 = p4 = 0. The subtraction point is therefore given by s = 4m2 and t = u = 0.

Thus

�� = ��2(V (4m2) + 2V (0)). (1.71)

Using this result we can finally write down the scattering amplitude for any momenta p1
and p2:

iM = �i��
i�2

32⇡2

Z 1

0
dx

✓
log

m2
� x(1� x)s

m2 � x(1� x)4m2
+ log

m2
� x(1� x)t

m2
+ log

m2
� x(1� x)u

m2

◆
.

(1.72)

This formula explains all the subtle features of renormalised perturbation theory:

1) The Lagrangian is well-defined since the coupling constant � appearing in it is a con-

stant, whose value is exactly the one measured at the subtraction point: at the subtraction

point the above equation becomes iM = �i�.

2) The measured value of the coupling constant at general momenta, �phys, is the value of

iM(p2) which can be computed in perturbation theory as done here to first loop-order.

3) The counter term is a sum of constant pieces, finite or infinite, at each power in � such

that they exactly cancel the corresponding terms that arise in the loop calculations. All

kinds of regularisation parameters can then be eliminated (i.e., taken to infinity or zero)

leaving only finite results.

Comment: In QED the analogues calculation can be done and compared to experiment

and the renormalised theory is found to work extremely well. In other words, as suggested

by renormalised QED the electric charge e is not a constant but depends on the energy scale

at which the experiment is performed. This is also exactly what is seen in experiments: in

terms of the fine structure constant which takes it usual value 1/137 at low energy (or large

scale) there is a 5 per cent increase in its value going from the subtraction point at low en-

ergy to 30 GeV. This fact will be given a quite intuitive explanation in the very last lecture.

Having understood how renormalised perturbation theory works for the coupling constant
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Thus the interesting points here are

1. The first (the snail) is infinite (goes as ⇤2) but independent of p2.

2. The same is true for the second term (the double-snail).

3. The third term (the sunset) is also infinite (goes also as ⇤2) but does depend on p2.

Let us investigate the third term a bit more. Let us call the function this diagram generates

f(p2). The following argument is, in fact, applicable even if this function represents the

entire series of perturbation terms. The integral in the third term is as we saw above

f(p2) := (�i�)2
Z

d4k1d4k2
k21k

2
2(p� k1 � k2)2

. (1.81)

We know from the Feynman parameter trick (together with a shift in the integration

variables) that this integral can be made to depend only on p2 and not linearly onpµ. Let

us then Taylor expand this function around the subtraction point p2 = m2:

f(p2) = f(m2) + p2
✓

d

dp2
f(p2)

◆
|p2=m2 +

1

2
(p2)2

✓
(
d

dp2
)2f(p2)

◆
|p2=m2 + ... (1.82)

The interesting thing that happens here is that the degree of divergence of the integral

decreases with each extra p2 derivative:

d

dp2

Z
d2k1d4k2

k21k
2
2(p� k1 � k2)2

/

Z
d2k1d4k2

k21k
2
2(p� k1 � k2)4

. (1.83)

Thus the derivative turns the ⇤2 divergent integral on the LHS into the log⇤ divergent

integral on the RHS. Doing another derivative will therefore produce a convergent integral

that goes as ⇤�2 as ⇤ ! 1. Thus the sunset graph gives rise to (as would also the entire

series of terms) two infinite constants at order �2 that must be cancelled in the subtraction

procedure. We express this as follows

f(p2)snail|div / ⇤2 + p2 log⇤+ finite. (1.84)

Both divergent term will show up in dimensional regularisation as simple poles in ✏ and

can thus be cancelled by adding new infinite terms at order �2 to the counter terms �m
and �Z where the latter one does indeed multiply p2 in the Lagrangian. This cancellation

procedure can in principle be carried out to arbitrary order in perturbation theory and the

de-parameters will therefore be infinite power series in the coupling constant �.

The fundamental question that must now be asked is: What happens if there are

infinite Feynman graphs appearing in the scattering process 2 ! 4 which does not corre-

spond to a term in the Lagrangian and hence cannot be cancelled against a counter term?

The only way out of this dilemma is to add the corresponding interaction term to the

Lagrangian so also these infinities can be cancelled by a counter term. Then the hope must

be that it stops here or just continues a finite number of times. However, this is not the
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case: once one adds one single non-renormalisable term an infinite set of higher interaction

terms must be added and the whole theory becomes non-renormalisable in the sense that

an infinite number of experiments must be performed before a prediction can be made.

Our next task is therefore to find a way to identify these dangerous terms that will render

a theory useless in this sense.

Comment: This situation should be compared to what happens in gravity which is non-

renormalisable but still a very useful theory! Recall that the Einstein-Hilbert Lagrangian

LEH =
p
� det gR contains both the metric gµ⌫ and its inverse so if one expands it in

terms of hµ⌫ defined by gµ⌫ = ⌘µ⌫ +
p
8⇡Ghµ⌫ (using standard GR conventions with gµ⌫

the curved metric and ⌘µ⌫ the flat Minkowski one) the Lagrangian becomes an infinite

series of terms in powers of hµ⌫ all with two derivatives and the indices contracted in more

and more complicated ways. However complicated this LEH is in this expansion around

Minkowski space its first term is just a conventionally normalised kinetic one 1
2(@µh⌫⇢)

2

while the next one is schematically
p
8⇡Gh@h@h etc for the following higher order terms.

Thus the coupling constant in Einstein’s general relativity is
p
8⇡G which has dimension

L1 making the theory non-renormalisable in the sense defined above.
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1.1.3 Renormalisability of �4 theory

In order to discuss the issue of whether a theory is renormalisable or not we must first

investigate where, that is in which Feynman diagrams, divergencies occur. Then the ques-

tion is whether all divergencies can be cancelled by good counter terms, that is counter

terms that do not lead to even more divergencies. We will do tis in two steps:

1. Count divergencies.

2. Check renormalisability.

Counting divergencies in d-dimensional �n: Consider again the Lagrangian for

the �4 but now generalised to any dimension d, i.e., d can be 2,3,4,5 or any other integer

number, and with an order n interaction term �n (for some positive integer n):

L =
1

2
@µ�@

µ��
1

2
m2�2 �

�

n!
�n. (1.85)

For a general Feynman diagram we denote the number of the di↵erent parts as follows:

N number of external legs,

V number of verticies,

P number of propagators

L number of loops. (1.86)

Then we define the superficial degree of divergence, denoted D, by

D := dL� 2P, (1.87)

since each loop contributes the dimension of ddk (i.e., d) and each propagator the dimension

of 1/k2 (i.e., -2) to the total dimensionality of the integral. This definition is exactly what

we used above when discussing the dependence of loop integrals in �4 theory on the cut-o↵

parameter ⇤. If D turns out to be non-negative the integral diverges as ⇤D or log⇤ if

D = 0. The name ”superficial” is used because there are complicated Feynman diagrams

where D does not give the whole story. We will only discuss one such case, namely gauge

theory in the form of QED.

First some examples from �3 theory in six dimensions:

=

Z ⇤

d6k
1

k2
1

(k + p)2
/ ⇤2, OK since D = 6 · 1� 2 · 2 = 2. (1.88)

=

Z ⇤

d6k1

Z ⇤

d6k2 (
1

k2
)5 / ⇤2, OK since D = 6 · 2� 2 · 5 = 2. (1.89)

=

Z ⇤

d6k (
1

k2
)3 / log⇤, OK since D = 6 · 1� 2 · 3 = 0. (1.90)

=

Z ⇤

d6k (
1

k2
)4 / ⇤2, finite, OK since D = 6 · 1� 2 · 4 = �2. (1.91)
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These examples are quite trivial but we can learn a lot more from them:

–D=2 is the maximal value.

–D decreases with increased number of external legs.

–Adding a new internal line (propagator) adds 6�2 ·3 = 0 to D, i.e., the number of vertices

does not matter so D is the same to all orders in perturbation theory (i.e., in powers of �):

it only depends on the number N of external legs of the diagram.

All these conclusions are also true for �4 theory in four dimensions but not if either

d or n is changed in these cases (i.e., d = 6 is tied to �3 and d = 4 is tied to �4 for these

conclusions to be true). It is rather easy to derive a general formula for D which contains

these facts as special cases.

To do this we make use of two relations between the numbers defined above, N , V , P

and L:

nV = N + 2P. (1.92)

This is a direct consequence of the fact that each externa leg connects one end and each

internal line connects two ends to the available vertices in the Feynman diagram.

L = P � V + 1. (1.93)

This relation follows by counting the total number momentum integrals and momentum

delta-functions �4 using x-space Feynman rules: The loop integrals all come from the

propagators
R
ddpeip·x/p2 � m2 but some of them can be done using the delta functions

coming from the vertices
R
ddx ) �d(momenta): Thus we have L = P � (V �1) where the

1 refers to the �4 implementing overall momentum conservation that remains at the end.

Using these relations to eliminate first L and then P from D we find:

(�n)|d : D = d+

✓
n
d� 2

2
� d

◆
V �

d� 2

2
N. (1.94)

This is an extremely nice formula containing a lot of information:

1. Increasing N ) decreasing D for d > 2 (as we saw above).

2. d = 2 is very special: D = 2� 2V independent of N .

3. In d dimensions a scalar field has length dimension [�] = L�d�2
2 . Thus the coupling

constant �n from the interaction term discussed here �n
n! �

n has dimension [�n] = Ln
d�2
2 �d.

Thus we see that the two special cases analysed above (d, n) = (6, 3) and (d, n) = (4, 4),

both have dimensionless coupling constants since d = nd�2
2 in both cases. Therefore we

have that

n =
2d

d� 2
) D = d�

d� 2

2
N, (1.95)

and the conclusion we found above by looking at these special cases follow directly. There

is a third quite interesting case of this kind, namely (d, n) = (3, 6)2

2
This case is relevant in M-theory.
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Comment: In all these cases with a dimensionless coupling constant the massless the-

ory has more space-time symmetry than Poincaré, they are invariant under the conformal

group. The conformal group is the Poincaré plus scale transformations, which is the sym-

metry of the light-cone ds2 = gµ⌫dxµx⌫ = 0. Also Maxwell’s theory is conformal as well as

QED with massless fermions (since e is dimensionless), and, in fact, the whole of the stan-

dard model is conformal before the Higgs e↵ect if we drop the mass term for the Higgs field.

Consider now a scalar theory i d dimensions with a �p interaction term where p < n.

Then

D = d+

✓
p
d� 2

2
� d

◆
V �

d� 2

2
N, where p < n =

2d

d� 2
, (1.96)

implies that the bracket is negative and hence D decreases with increasing number of ver-

tices for any N , but if p > n D will become positive (with new infinite diagrams appearing)

for large enough V for any N .

The condition n = 2d
d�2 on the power of the interaction term for the coupling constant

to be dimensionless is thus a boarder case between �p with p < n and p > n that gives

rise to the following classification of scalar field interactions and, in fact, theories in general:

Finite: Has no infinite Feynman diagrams at all.

Ex: String theory and N = 4 SYM.

Superenormalisable: Finite number of infinite diagrams, [�] = L<0.

Ex: [m2] = L�2 (such interactions called relevant in condensed matter physics).

Renormalisable: Infinite number of infinite diagrams but only for small N , [�] = L0.

Ex: �4 in d = 4 (called marginal in condensed matter).

Non-renormalisable: Infinite number of infinite diagrams at all values of N , [�] = L>0.

Ex: Gravity with [G] = L2 (called irrelevant in condensed matter.)

To make these ideas concrete let us return to �4 in d = 4 theory:

L =
1

2
@µ�r@

µ�r �
1

2
m2�2r �

�

4!
�4r . (1.97)

This theory has three quantities

[�] = L�1, [m] = L�1, [�] = L0, (1.98)

that are associated with the renormalisation constants �Z , �m and �� which can be used to

cancel infinities arising in perturbation expansion. The number of infinities must therefore

not exceed three (and should also be checked to appear in the right places to be cancelled):

D = 4�N )

( N = 2 : D = 2 ! ⇤2
) 2 infinities

N = 4 : D = 0 ! log⇤ ) 1 infinity

N = 6 : D = �2 ! ⇤�2
) no infinities.

(1.99)
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The conclusion from this counting exercise is that the number of infinities is 3 which equals

the number of renormalisation constants in the theory making it renormalisable.

Comment: As we will see later this counting of infinities and renormalisation constants

becomes more involved but also much more interesting when symmetries enter the situa-

tion, either gauge symmetries as in QED of global ones as for instance � ! �� which is

present in the �4 in d = 4 theory discussed here.

To exemplify this comment we consider instead Yukawa theory with a Dirac fermion coupled

via g� ̄ to a real scalar with self-interaction �3�3 in d = 4. This theory is renormalisable

according to the classification above since g is dimensionless and �3 has dimension L�1.

But the scalar potential is potentially bad since it is unbounded from below and the theory

is therefore unstable. However, let us consider the perturbation theory despite this fact.

There are a number of divergent graphs, the bosonic snail, the fermionic snail, the fermi

triangle, the fermi square etc: (solid line=fermion, dashed line =scalar)

The superficial degree of divergence for these diagrams is: the fermionic triangle has

D = 1 and the fermionic square has D = 0. Thus the theory is not renormalisable since L

does not contain a �4 term which is generated in perturbation theory by a diagram that is

infinite. The conclusion is that we have to add the �4 term to the Lagrangian which then

becomes both renormalisable and stable.

Exercise: Verify that this Yukawa theory with both cubic and quartic scalar interac-

tion terms is renormalisable by counting divergencies and renormalisation constants.

The above conclusion about the need to add the quartic term to the cubic one is very

general and can be expressed as follows:

Rule for renormalisability: All possible renormalisable terms must be included in the

Lagrangian unless they are forbidden by symmetries.

An example of this is the �4 in d = 4 theory which does not force us to add the cubic

term. The reason being that the global symmetry � ! �� makes it impossible for the

theory to generate any non-zero three-point functions. We will encounter other examples

of this phenomenon later.
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