1.13 Radiative corrections and renormalisation

1.13.1 Reading instructions for PS on Radiative corrections and renormalisa-
tion

Canvas: Lectures 15 - 20 will appear in one Doc-file (or maybe two) which will be updated
with the latest lecture just before it starts. Also this page with reading instructions will
be updated after each lecture to make it as accurate as possible.

We will study parts of chapters 6, 7 and 10 but jump back and forth in this material.
The lectures 15 to 20 will define exactly what is important for this course. In particular
these lectures will give the order in which to read this material. I advice you to follow this
order at least the first time you go through it. It will be done in PS as follows:

1. Go back to Chap 1 and read pages 8 - 12 again, in particular the part called ”Em-
bellishment and Questions” and the comments connected to Figure 1.4.

2. Get more input on this QED discussion by reading Chap 6, Intro on p. 175 - 176.

3. To get into the subject of loop corrections and how to handle them when they are
infinite we leave QED for now and turn to ¢* theory which is much simpler than QED
in this respect. Therefore we jump to Chap 10 where we read first the Intro, page 315,
and turn to sect. 10.2 which we will study in all details (skipping sect. 10.1 for now).
However, even sect. 10.2 will not be done in the order presented in PS: Instead we start
from mid-page 326 ”One-loop Structure of ¢* theory” and return to the first part of sect.
10.2 after that. In section 10.2 the text refers back to chapter 7 a few times: the only thing
needed from chapter 7 at this point is the stuff on ”Dimensional regularisation” pages 249
- 251. You may also want to consult PS about Feynman parameters in Chap 6, pages end
of 189 and 190, but the lectures will contain what you need.

4. Read then sect. 10.1, starting at eq. 10.12, pages 321 - 322: Counting divergencies
in ¢* theory.

5. Then study sections 10.1 and 10.3 (the rest of chapter 10 is not included).

6. read the Intro pages 175 - 176 again (sect. 6.1 is not included)
read sect 6.2 and 6.3 (sections 6.4 and 6.5 are not included)

7. Intro of Chap 7 and section 7.1. (Section 7.2 is not included)
Section 7.3: read pages 230 - 232 (the rest is not included)
Section 7.4: read page 238 (the rest is not included)

Section 7.5: This whole section is very important!
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minus signs appear since ps and p4 are out-going momenta.

Our next task is to analyse V(p2), that is, the four-dimensional momentum integral

V(p?) = Z'/Oo d' ! ! (1.788)
P =g | ) k2 —m2 tic (k+p1+p2)? —m2+ic '

This analysis is hard to do directly in the above integral so a very useful trick is to Wick
rotate! That is, we can let k° become complex and then turn the integral over the real
part of k° (appearing in the integral above) into an integral along the imaginary k° axis
by letting k0 — ik?. This is called a Wick rotation and can be viewed as a rotation of
the real axis into the imaginary one without passing any poles in the Feynman propagators.

The integral has now become Euclidean, with k? replaced by —k%, and we can therefore
introduce polar coordinates in this four-dimensional Euclidean momentum space by

[e¢) d4kE 0 3
= [ dkk® [ dQu, (1.789)
—o0 (27T)4 0 S3

where k is now the radial coordinate in momentum space. The angular integral is over the

unit radius 3-dimensional sphere S3.

It is then a simple matter to check how V(pQ) behaves for large momenta, i.e., in the
UV limit. Introduce a large cut-off A in momentum space as follows

11
V(p2)0</ dkk3k2k2, (1.790)

where we have taken A big enough so that masses and external momenta p; can be neglected
in the denominator of V(p?). Then

V(p?) o / dk k3 12 I<;2 / — o< log A — 00 as A — o0, (1.791)

This is our first important result: the integral in V(p?) is divergent!

The above discussion and divergence analysis of V(p?) will force us to perform the
following three steps:

1. Regularisation: This refers to the introduction of any kind of parameter (like A
above) that can be used to define the way the integral approaches infinity when the pa-
rameter is taken to infinity (or to zero if that is how the divergence is emerging).

2. Renormalisation: This refers to the procedure required to relate the parameters

in the Lagrangian to the measured values of these parameters. This step will also involve
the fields themselves. The renormalisation needed here is multiplicative as we will see later.
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3. Renormalisability: When the previous step is under control one can start check-
ing if the theory is renormalisable. This is done by counting the divergent diagrams and
comparing that number to the number of parameters in the Lagrangian (including the
fields).

1. Regularisation: There are several ways to make a divergent integral convergent
and physics must of course be independent of which one we use. This will be clear below.
Here we will discuss three often used regularisations:

a) Cut-off: This is the one used above, that is after Wick rotation one introduces the

[e%S) A
/ d4kE—>/ dkk3/d§2, (1.792)

which cuts of the integral at some large momentum A which is taken to infinity at the

cut-off parameter A by

end. Note that this is an SO(4) invariant procedure (corresponding to Lorentz invariance
before Wick rotation) but it destroys gauge invariance in QED since in momentum space
a gauge transformation reads 64, = ip, o and hence depends on the momentum. Thus it
also affects unitarity.

b) Pauli-Villars: Here one introduces a heavy ghost particle of the same spin as the

one in the divergent loop and then takes the mass M to infinity. Explicitly
B — L ]

k2 —m2+ie  k2—m2+ic k22— M?+ie

Dp = (1.793)

where the minus sign is the origin of the name ghost and heavy refers to the large value of
M. This trick is Lorentz invariant and gauge invariant if applied to a photon propagator.
It is not unitary until after the limit M — oo is taken. The key point here is that for
very large momenta where the masses can be neglected the two integrals cancel each other
making the sum of the two terms UV finite. Of course, if M — oo is taken first the second
term is zero and we are back to the usual propagator.

¢) Dimensional regularisation: Very nice to work with but physically a bit obscure
perhaps. Here one generalises the momentum integrals to a general dimension d which
does not even have to be integer:

d=4—d=4—¢€ where ¢ = 0. (1.794)

d) Lattice regularisation: Turning spacetime into a lattice makes it possible to compute
certain quantities exactly. However, then the lattice must be removed by letting the lattice
spacing go to zero which does not always work. Certain kind of chiral theories are also
impossible to treat with this method. This will not be discussed any further in this course
(see PS sect. 22.1).

The regularisation procedure raises a number of questions and it is therefore interest-
ing to note that there are theories in four space-time dimensions which do not need this
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step at all:

Field theory: Super-Yang-Mills with maximal number of supersymmetries known as
N = 4 SYM*!. After this theory was discovered other less supersymmetric YM-theories
have been found that are also finite.

String theory: Here there are no UV infinite diagrams at all at any loop order.

We now return to the integral V(p?) defined above which we found to be infinite. In
order to compute it exactly (before Wick rotation) we need another trick due to Feynman:
Introduce a Feynman parameter x by the following integral

1 ! 1
— = dx .
AB /0 (xA+ (1 —1x)B)?

(1.795)

This is easily checked:

1 1 \*! 1 11 1 B-A 1

H = — = —— _— = — = — —_—
RS ( xA—i—(l—x)BXA—B)IO A—B(A B) A-B " AB ~ 4B
(1.796)

Introducing this Feynman parameter into V (p?) while identifying A with k? —m? and
B with (k + p)? — m? we get (the +ie is not relevant here)

N . d'k 1
Vi) =g [ a | @)t @k —m?) - (1= 2)((k 1 ) —m2))? (1.797)

The expression in the denominator, often denoted D, can now be simplified somewhat
(compare to PS p. 327):

D=x(k?>—m>) + (1 -z)((k+p)?—m?) =k —m?+ (1 —2)(p*+2k-p). (1.798)

Now we change integration variables from k to | = k + (1 — x)p. This gives, still in
Minkowski,
oy i ! d*l 1 A 2
V(p®) = 2 )y dx et Z=A) where A =m* —z(1 — z)p”. (1.799)

This is a nice result since

1) V depends only p?, not linearly on p* as before,

2) the l-integrand is independent of angles = the Euclidean version of the integral is rather
easy to compute exactly.

To compute V (p?) exactly we first Wick rotate: [0 := i 1% which implies

0:=il% = 12=-13, di=idlg. (1.800)

“1This theory was proven finite to all loop orders using superspace Feynman diagrams in the following
papers (in chronological order) L. Brink, O. Lindgren and B.E.W. Nilsson, Nucl. Phys B212 (1983), S.
Mandelstam, Nucl. Phys B213 (1983) and L. Brink, O. Lindgren and B.E.W. Nilsson, Phys. Lett. B123
(1983).
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Therefore the Euclidean version of V (p?) is

4
I
V?) __/ /d B = +A)27 where A =m? —z(1 —2)p%.  (1.801)

Here we should note that p* is still in Minkowski space although we have Wick rotated in
the integration variable [ to be able to perform the integral as swiftly as possible.

The next step is therefore to do the angular integrals. Here we will take another
important step and get the result in any dimension d and then let d be any real positive
number. How this is possible will become clear below.

First we split the whole Euclidean momentum integral into a radial part and an angular

/ddlE = /dud—l /Sd_l dQyq, (1.802)

which is just a direct generalisation of the cases d = 2 and d = 3. The radial coordinate

part by

in Euclidean momentum space is denoted ! (without any index E) and S¢~! is the d — 1-
dimensional unit sphere.

The angular part can be done as follows. Recall that ffooo dre " = /m and hence,
for integer values of d,

o0
= (Vm)t = /cldsce_ﬁ_g”%_“”_ﬂ‘3 :/0 drrd_le_Tz/de. (1.803)

[SlisY

™

But here we integral over the radial coordinate r is rather easily done by setting y = 2.

Then
> d—1_—1r? L[> 41 —y
drr® e =5 dyy2~"e Y. (1.804)
0 0

This integral is quite remarkable since for d = 2 it becomes

/ dye ¥ =[—-eY]g° =1 (1.805)
0

Denoting the integral I'(d/2) for now we have I'(1) = 1. By partial integrations one can
prove that
I'(n+1) = nl'(n). (1.806)

This is recursive and can be expressed as
I'(n)=(n-1) (1.807)

so this function is the standard Gamma function, here represented by the integral above.

However, the integral representation is not restricted to integer values of the argument
n so we can define the angular integral above for any dimension d even when d is not an
integer. Thus, for any real d, we have

P
/de— l
I(

d
2

;

(1.808)

[JIsH
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To check this result, recall that I'(1/2) = /7 and thus I'(3/2) = 1/

2 3 3
2m2 272 272
G /dQ2 = T o 52 /ng - (1.809)
I'(3) INCIREY
For the case we are interested in here, that is d = 4, we get
o2 272
S3 /dQ4 = = =272 (1.810)
INCIERA®)

Finally, we can summarise these results in the formula

d
2 a5 o0
/ddlE:F?;)/O it (1.811)
2

1. Regularisation: Now we can compute the integrals that appear in these loop
corrections after Wick rotation:

I /Oo ae-t L (sety = I?) ! /Ood gt (1.812)
= =(sety=10°) = = . :
" CEF NI 2Jy YT AP
Set now A Ad p p
Y Y z
A T T Ty A2 T a2 T A (1.813)
and solving for y we get
A A 1 1—x
= =—-A=A(--1)=A . 1.814
R Ey (c-1=a— (1814)
Using these relations to turn the integral into an z-integral we get
1 (tdx  d d d 1 d [t d d
L=> [ Az 501 -a)2 = A22/ dea'~2(1—2z)27" (1.815)
2 )y A 2 0

In the spirit of the integral representation of the I' function above one can now also
express this integral in terms of I' functions. The relation is provided by the following
definition of the Beta function B(«, 3):

L(@)I'(8)

B(a, p) :== /1 dez® (1 —z)P~t = 222 (1.816)
0 I'(a+p)

Thus we have

1.4 1 d_,I'(2—9r¢
[l:§A2_QB(2_%,%)_ A2—2(72)(2)

=3 ) (1.817)

This is a very interesting result: it is divergent for d = 4 due to I'(2 — %) = T'(0) = oc.

In fact, by analytic continuation one can show that I'(z) is finite for all real values of z
except at non-positive integer values. To define this divergence in the physics problem we
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are looking at here, we let the dimension d become slightly less than 4, i.e. instead of using
d =4 we insert d = 4 — €. This gives

r2-49 :r(%) z%+7+0(e), (1.818)

where we in the last step used a well-known expansion of the I" function for small arguments.
The constant -y is the Euler-Mascheroni constant v ~ 0.5772...

At this point we should return to the question how physics can be extracted from these
formulas. To do this we go back to the momentum integral in V' (p?) which now is in d
dimensions, and in the limit ¢ — 0 becomes

d
[ aptere= e (s -vvow). s

There are a couple of steps before one finds this result. The derivation goes as follows:

d

/ iy 1 / dQy /00 g L1 2wzl 4,2 5)T(5)

(2m)d 12+ A)2 ) (2n)? J, (2+A)2 (2m)ir(9)2 re
(1.820)

This can be simplified a bit to, using also I'(2) = 1,
d4l 1 5 4
E UE TN d

= A27°T(2 - 9). 1.821
/ 2m)d (2+A)2  (2m)d (2-3) ( )

To get the result quoted above we need not only the expansion of the last I" factor given

d
above, but also to expand A272 for small e: with d =4 — € we get
d € €
A2 =A"2 =¢ 285 =1 Slog A 4 O(?). (1.822)

Multiplying these two expansions together and collecting the 1/¢ and the e independent
terms gives the result above. Note that also the 27 factors could have been expanded like
this and then contributed to the finite constant (momentum independent) terms. As will
be clear later such terms contain no physics information which is why we skipped those
terms here.

In fact, this is the point where we should stop and clarify where the physics information
come from in the above expression

d41 1 1 2
[ G apbere = g (e = v00). o

There are three kinds of terms here that survive the limit e — 0: The first divergent
one, the second finite but p? dependent one, and the third one which is just a finite
constant. The renormalisation procedure to be discussed later when we fully understand
the regularisation step discussed here will show that all information about the physics is
contained in the log A(p?) term basically because of its p? dependence.
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Having stated this fact we can continue to check if the other regularisation procedures
generate the same physics. So let us complete the calculation with the cut-off parameter
A. Then we need to compute, for d = 4,

1

I (A Adud 1 12 1 Azd g1 1
= e = = = — 2 _—
(8) A EraE = =) ZA R PN

1 dyy 1 1 1 1 1 Y 2
—(d=4)== WY gyt (—— V== | dy—— g [——L A
( ) 2/0 (y+A)? 2/0 yy9y( y+A) 2/0 Yyra 2( y+A> 0

1. A2+ A 1 A2

= ilog A AN LA (1.824)
In the limit A — oo this reduces to
Ii(A — o0) :logA—%logA—%, (1.825)
and hence . . .
/ (QW)de_)oo = W(—logA—leogA—l). (1.826)

Recalling the rule stated above about which term contains the physics information, namely
the one depending on p?, i.e. log A(p?), we find that the physics is the same as for dimen-

sional regularisation.

As a last case we also do the computation with Pauli-Villars regularisation. Thus, with

2

the mass dependence in A(m) = m? — z(1 — x)p?, we have

o0 1 1
”““:A “ﬁ<m+Amm2‘W+Ame) (1.827)

which by setting y = 1% becomes

- ;/Ooodyy <(y+i(m))2 - (y+A1(M))2>

- _% log 2((]\?) = —5log A(m) + %bgA(M)- (1.828)
Thus o ) 1
/@ijwlM%m = W(—logA(m) + A(M))’ (1.829)

which once again provides the same physics information stored in the term —ﬁ log A(m)

while the divergence is captured by the other term @ log A(M).

We now turn to the issue of renormalisation which will explain the above statement about
where to find the physics information after regularisation.

2. Renormalisation:
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1.1.2 Renormalisation in ¢* theory

Consider again the Lagrangian for ¢* theory:
1 1 A
_ oy L2202 A4
L= 5 L pOH 5™ 1) 4!(;5 . (1.47)

As already mentioned the whole issue of renormalisation concerns the following question:
Question: What exactly do the parameters m and A actually mean when the Lagrangian
is used to make predictions for an experiment? As we will see later this question also

involves the field, here just ¢.

Idea: Choose the parameters in £ so that the observable quantities take their physi-
cal (finite) values.

How is this done? Considered again the scattering process discussed above

IM(12 = 34) = —iX 4+ (—iN)?(iV (s) + iV (t) + iV (u)) + ... (1.48)
where, with A = m? — 2(1 — z)p?,
V(p?) = - ! /ld 2 logd —log(m? — z(1 — z)p*) (1.49)
p—327T209367 g 47 g(m” —x x)p .

and the dots indicate an infinite series of higher loop terms (at higher and higher order in
the coupling constant ).

Note now the following facts:

1) A is not the physical coupling constant A,,s measured in experiments since that value
is determined by the whole perturbation series, i.e.,

iM = _i)‘phys(p2)7 (150)

which does depend on p?, the momentum at which the scattering experiment is performed.
This p? dependence is seen in experiments so it is not surprising that also the theory, via
V(p?), indicates that p? plays a role here. We will state this fact as

Ameasuv“ed = )‘phys (pQ)- (151)
We emphasise here that the Lagrangian £(z) can NOT contain parameters that depend

on momenta since that would make it non-local or worse.

2) Our intuition that coupling constants are constant come from experiments at very low
energies and therefore it is natural to define ”the coupling constant” A at zero 3-momentum
p = 0, called the subtraction point, by

A= Aphys(p" = (m,0,0,0)). (1.52)
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2

Call this value m?, that is by definition p?> = m?. This is the mass we obtain from an

experiment and this value of p? plays the role of subtraction point in this case.

2) Let us now expand M (p?) around this physical value m?:
d
MOP) = M)+ 0 = ) (50 i+ (158)

Inserting this expansion into the propagator above gives

i i
p?—m§— M(p?) +ic  p2—md — (M(m?)+ (p? — m?)(F2 M (p?))|m2 + ...) + i€
(1.59)
This means that for p? close to the pole p? — mg — M(m?) = p® — m? and the propagator
d
reads ; iz w60
@ =) (L= Ml PP |
where we can identify the field renormalisation constant Z as
d ) !

Since the exact propagator is really the two-point function (Q|T ¢ (z)¢pe*et(y)|Q)

we want it to behave as —5—
pe—m —+ie

convenient to define a new field ¢,, the renormalised field, by rescaling the field in the

close the pole where m is the physical mass. It is therefore

Lagrangian ¢ as follows

b =VZ,. (1.62)

The Lagrangian is then written as
1 1 Ao
L= 520,6,0"6, — 52 mi? — 0 7 61, (1.63)

and now the key point about this version of the Lagrangian is that the exact propagator
close to the pole is precisely
i

(QUT P (x)r () 2) = —

—_— 1.64
p? —m?2 +ie (1.64)

Now one could start doing perturbation theory using the standard Feynman rules but
expressed in terms of the new renormalised field ¢, and the bare constants mg and Ag.
However, there is a much more convenient way to view this Lagrangian which emerges if
one defines the following d-parameters:

07:=7 =1, 0p :=m3Z —m>, Oy :=NZ>—\. (1.65)

Expressing the Lagrangian in terms of these § parameters and the physical quantities m, A
and the field ¢,, instead of the bare parameters mg and Ay together with ¢ has no physical
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which gives the scattering amplitude
iM(12 — 34) = —id 4+ (—iN)?(iV (s) + iV (t) + iV (u)) — 6. (1.69)

The first thing to do is to determine the constant (i.e., p> independent) value of §y. This
is done by demanding that at the subtraction point, which in case we choose to be p; =
p2 = 0, the counter term cancels the one-loop terms so that

M(12 = 34) |subt point = —iA. (1.70)

In other words: at the subtraction point the physically measured value of the coupling
constant, i.e. M(12 — 34)|subt point, is the value we give the coupling constant, A, in the
Lagrangian.

With this choice of subtraction point we have s = (p1 + p2)? = 4m?. Then since

s+t 4+ u = 4m? we also have that t + u = 0 which implies F3 + E; = 2m, and thus also
that pg = p4 = 0. The subtraction point is therefore given by s = 4m? and t = u = 0.
Thus

5y = —\2(V(4m?) + 2V (0)). (1.71)
Using this result we can finally write down the scattering amplitude for any momenta p;
and po:
ix2 [l m? — (1 —x)s m? — (1 — )t m? — (1 — x)u
M= —id——— dr (1 log—————— +1
iM " 32 /0 v <og m? —z(1 — x)4m? log m? log m?
(1.72)

This formula explains all the subtle features of renormalised perturbation theory:

1) The Lagrangian is well-defined since the coupling constant A appearing in it is a con-
stant, whose value is exactly the one measured at the subtraction point: at the subtraction
point the above equation becomes iM = —i\.

2) The measured value of the coupling constant at general momenta, Appys, is the value of
iM (p?) which can be computed in perturbation theory as done here to first loop-order.
3) The counter term is a sum of constant pieces, finite or infinite, at each power in A\ such
that they exactly cancel the corresponding terms that arise in the loop calculations. All
kinds of regularisation parameters can then be eliminated (i.e., taken to infinity or zero)
leaving only finite results.

Comment: In QED the analogues calculation can be done and compared to experiment
and the renormalised theory is found to work extremely well. In other words, as suggested
by renormalised QED the electric charge e is not a constant but depends on the energy scale
at which the experiment is performed. This is also exactly what is seen in experiments: in
terms of the fine structure constant which takes it usual value 1/137 at low energy (or large
scale) there is a 5 per cent increase in its value going from the subtraction point at low en-
ergy to 30 GeV. This fact will be given a quite intuitive explanation in the very last lecture.

Having understood how renormalised perturbation theory works for the coupling constant
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which is infinite but has no term relevant for physics and hence it gets completely cancelled
by the counter term.

Thus the interesting points here are

1. The first (the snail) is infinite (goes as A%) but independent of p.
2. The same is true for the second term (the double-snail).
3. The third term (the sunset) is also infinite (goes also as A?) but does depend on p?.

Let us investigate the third term a bit more. Let us call the function this diagram generates
f(p*). The following argument is, in fact, applicable even if this function represents the
entire series of perturbation terms. The integral in the third term is as we saw above

NPERY d'kyd'k
F(p?) = (—iN) /k%kg(p_kl_b)? (1.81)

We know from the Feynman parameter trick (together with a shift in the integration

variables) that this integral can be made to depend only on p? and not linearly onp*. Let

us then Taylor expand this function around the subtraction point p? = m?:

f(p2) = f(mz) +p2 <Cliﬁf(p2)) ‘p2:m2 + %(pQ)z <(ddpQ)2f(p2)> ‘p2:m2 + ... (1.82)

The interesting thing that happens here is that the degree of divergence of the integral
decreases with each extra p? derivative:

d / d*k1d*ks / d*k1d ko

el . 1.83
dp2 k%k%(p - kl - k’Q)Q x k%k%(p — kl — k2)4 ( )

Thus the derivative turns the A? divergent integral on the LHS into the log A divergent
integral on the RHS. Doing another derivative will therefore produce a convergent integral
that goes as A=2 as A — oco. Thus the sunset graph gives rise to (as would also the entire
series of terms) two infinite constants at order A that must be cancelled in the subtraction
procedure. We express this as follows

f(pz)smmdw o A2 + p?log A + finite. (1.84)

Both divergent term will show up in dimensional regularisation as simple poles in ¢ and
can thus be cancelled by adding new infinite terms at order A? to the counter terms &,
and 67 where the latter one does indeed multiply p? in the counterterm. This cancellation
procedure can in principle be carried out to arbitrary order in perturbation theory and the
d-parameters will therefore be infinite power series in the coupling constant A.

The fundamental question that must now be asked is: What happens if there are
infinite Feynman graphs appearing in the scattering process 2 — 4 which does not corre-
spond to a term in the Lagrangian and hence cannot be cancelled against a counter term?
The only way out of this dilemma is to add the corresponding interaction term to the
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case: once one adds one single non-renormalisable term an infinite set of higher interaction
terms must be added and the whole theory becomes non-renormalisable in the sense that
an infinite number of experiments must be performed before a prediction can be made.
Our next task is therefore to find a way to identify these dangerous terms that will render
a theory useless in this sense.

Comment: This situation should be compared to what happens in gravity which is non-
renormalisable but still a very useful theory! Recall that the Einstein-Hilbert Lagrangian
Ley = \/—detgR contains both the metric g,, and its inverse so if one expands it in
terms of h,, defined by g, = N + \/%hw (using standard GR conventions with g,,,,
the curved metric and 7,, the flat Minkowski one) the Lagrangian becomes an infinite
series of terms in powers of h,, all with two derivatives and the indices contracted in more
and more complicated ways. However complicated this Lgp is in this expansion around
Minkowski space its first term is just a conventionally normalised kinetic one %((%h,,p)Q
while the next one is schematically v8rGhdhOh etc for the following higher order terms.
Thus the coupling constant in Einstein’s general relativity is v/87G which has dimension
L' making the theory non-renormalisable in the sense defined above.
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that the two special cases analysed above (d,n) = (6,3) and (d,n) = (4,4), both have

dimensionless coupling constants since d = n% in both cases. Therefore we have that

2d d—2
= D=d——"N, (1.95)

"T a2 2

and the conclusions we found above by looking at these special cases follow directly. There
is a third quite interesting case of this kind, namely (d,n) = (3,6)3.

Comment: In all these cases with a dimensionless coupling constant the massless the-
ory has more space-time symmetry than Poincaré: They are invariant under the conformal
group. The conformal group is the Poincaré plus scale transformations z#* — Qz*, which
is a symmetry of the light-cone ds? = gudxtdx” = 0. Thus Maxwell’s theory is conformal
as well as QED with massless fermions (since e is dimensionless), and, in fact, the whole of
the standard model is conformal before the Higgs effect if we drop the mass term for the
Higgs field. Gravity is not conformal.

Consider now a scalar theory in d dimensions with a ¢ interaction term where p < n.
Then

d—2 d—2 2d
) (1.96)

D:d+<p2_d V—?N, Wherep<n:ﬁ,
which implies that: The bracket is negative and hence D decreases with increasing number
of vertices V' (for d > 2).

Note: If instead p > n then the bracket is positive and D will become positive (with new
infinite diagrams appearing) for large enough V for any N.

The condition n = d%dé on the power of the interaction (giving a dimensionless coupling
constant) is thus the boarder line case between ¢ with p < n and p > n. It gives rise to
the following classification of scalar field interactions and, in fact, theories in general:

Finite: Has no infinite Feynman diagrams at all.
Ex: String theory and N’ =4 SYM.

Superenormalisable: Finite number of infinite diagrams, [\] = L<C.
Ex: [m?] = L2 and ¢ in d = 4.

(Such interactions called relevant in condensed matter physics.)

Renormalisable: Infinite number of infinite diagrams but only for small N, [\] = L=0.
Ex: ¢* in d = 4.
(Called marginal in condensed matter.)

Non-renormalisable: Infinite number of infinite diagrams at all values of N, [\] = L>°.
Ex: ¢° in d = 4 and gravity with [G] = L?. (Called irrelevant in condensed matter.)

3This case is relevant in M-theory, the theory that unifies all string theories.
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present in the Lagrangian from the start.

Exercise: Verify that this Yukawa theory with both cubic and quartic scalar interac-
tion terms is renormalisable by counting divergencies and renormalisation constants.

The above conclusion about the need to add the quartic term, as well as the cubic one, is
very general and can be expressed as follows:

Rule for renormalisability: All possible renormalisable terms must be included in the
Lagrangian unless they are forbidden by symmetries. Each renormalisation parameter ¢
requires an experiment to determine the related physical parameter in the Lagrangian.

An example of this is the ¢* in d = 4 theory which does not force us to add the cubic
term. The reason for this is that the global symmetry ¢ — —¢ makes it impossible for the
theory to generate any non-zero three-point functions. We will encounter other examples
of this phenomenon later.
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We can now continue the process of constructing the renormalised Lagrangian for QED.
The conventional multiplicative renormalisation of the fields read

b= Zoy", A=\ Z3AL, (1.108)

Then starting from the above QED Lagrangian but now with an index 0 to indicate the
bare constants, it reads in terms of the renormalised fields just defined:

1 - _
L= _ZZ?’(FIZV)Q + ZoY" (iv" 0 — mo) " — eoZan/ Zg A YT (1.109)

It is now very important that if we use a regularisation procedure that respects gauge
invariance, like dimensional regularisation or Pauli-Villars, then the last two terms must
combine to a covariant derivative D, = 0,, — ieA, where e must be the physical coupling
constant. This implies that (in perturbation theory as well as exactly)

e=-eo\ Z3. (1.110)

It is conventional to define another multiplicative renormalisation constant Z; from the
interaction term by

€Z1 = €0Z2\/ Z3. (1111)

The relation derived from gauge invariance in the previous equation then implies
7 = Zs. (1.112)

We will come back to this condition later and show that it is correct at least to first loop
order in perturbation theory provided the regularisation method we use respects gauge
invariance (i.e., dimensional and Pauli-Villars).

We can now take the second standard step and define the renormalised QED La-
grangian. This is done by defining the J-parameters

0 =21—1, dg:=Zy—1, 03:=23—1, 0 := Zomg— m. (1.113)

With these definitions the renormalised Lagrangian becomes

1 T r T r
L=—(FL)" + 0" (iy" 0, = m)y" — eApgTyty
1 I r r,nr r
— 153(F5”)2 + P (16278 — S )" — 0L ALY (1.114)

We will now start computing the expressions for the divergent one-loop diagrams that
we have identified above, and also show that no other divergences arise that would con-
tradict the conclusions found here. These divergent Feynman graphs appear in the vertex
and in the two propagators, i.e., in the quantities

(T)a", T, 5," (1.115)
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It is then possible to simplify the matrix functions A, B, C' (functions of p and p’) quite a
bit. In fact, recalling the comments above, the only kinds of non-trivial matrix terms (i.e.,
not proportional to the unit matrix) are

Y pvs VD VDD (1.121)

For B and C all three of these can immediately be replaced by the mass times the unit
matrix using the Dirac equations above, provided the last one is written

u(p" )V pupu(p) = —a(p )y pupyu(p) = —u(p ) (Y — 9" )pup)u(p). (1.122)

Thus both matrices B and C' when sandwiched between u spinors are really just functions
of the momenta times the unit matrix. The same conclusion is true for the matrix function
A but here one has to use also

a(p) vy = a®) "o, = a®) (=P, + 20™") = —alp)) p + 2a(p) p¥.  (1.123)

To summarise: All three matrices A, B, C' are just Lorentz invariant functions of the mo-
menta p and p’ (since ¢ = p’ — p) times the unit matrix. There are only three Lorentz
invariants in this case, p?, p’* and p - p/, but on-shell we have p? = p'2 = m2. We can also
use ¢2 = (f
the A, B, C are functions of just ¢?, and the parameters m and e.

—p)2 =2m? —2p - p' to express p-p in terms of ¢°. Thus we conclude that

As a second constraint on the vertex function it must of course satisfy the Ward iden-
tity. The photon leg has momentum ¢ = p’ — p so the Ward identity

quIT(p.p) = 0= (), — p )V A@®) + W) — pu) (0" + 1) B(¢?) + °C(¢?) = 0, (1.124)

where it is important to emphasise that in the Ward identity the photon momentum ¢* is
arbitrary and does not have to satisfy ¢? = 0.

When sandwiching the above expression between u spinors we can as above use the Dirac
equation in both directions (i.e., on both u(p) and @(p’)) which sets the first term to zero.
Also the second term is zero using p? = p’ 2 — m2. Thus it follows that C (¢%) = 0 and we
have shown that

T4 (p,p') = 7" A(¢®) + (" + p") B(¢?), (1.125)

where both A(¢?) and B(q?) are just functions times the unit matrix. This result is valid
beyond perturbation theory and turns out to have a lot of physics in it.

To get a clear picture of the physics it turns out convenient to replace the second term
containing a factor (p’* + p*) with a term involving 0#”q,. This can be done using the so
called Gordon identity:

(1.126)

a0y ulp) = a(y) (pm it Wq”) u(p).

2m 2m
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The proof of this identity goes as follows: First note that

it gy = =g, = —%(’Y“’YV — "YW, — ) = —%(v“(p’ —p) — (¢ —p)*). (1.127)

When sandwiched between u spinors this becomes (using y#v" 4+ vV~ = 2gH")

u(p')io™ qu(p) = —%ﬁ(p’)(v“p’ —2mA* + py")u(p) = a(p’)(2my* — (™" + p"))u(p).

(1.128)
So using the Gordon identity to eliminate (p’* + p*) we get
Toind
T*(p,p') =" Fi(¢%) + qu” Fa(q?), (1.129)

where the functions Fj;(¢?) are called form factors. As we will now show the two form
factors have the following interpretation

Fi(¢?) : Electric properties of the electron interactions.

Example: as when coupled to a classical potential from a fixed target Aff“ss (z) = (¢°%*3(r),0,0,0).
F»(q?) together with Fy(q?) : Magnetic properties of the electron interactions.

Example: as when coupled to Aff‘”s (x) = (0, A°®s3(r)) from a fixed target.

Before we explain the connection to physics we note that the vertex function I'*(p,p’),
considered as the exact expression (i.e., the complete result to all orders in perturbation
theory) is related to how we measure the electric charge e. Thus it is natural to set the
subtraction point for the charge in renormalised QED at ¢* = 0 in the same way as we
did for the coupling constant in ¢* previously (there we used p; = p2 = 0 which implied
s =4m? and t = u = 0 in the four-point amplitude). Thus the renormalisation condition
for the charge e in QED, at the subtraction point ¢* = 0, is

I (p, p)lgn=0 = 7", (1.130)

which corresponds to Fj(¢? = 0) = 1.

Electric case: Since the classical potential from a fixed source is time independent its
Fourier transform becomes (dropping class on the RHS)

Acless (q) = 276(¢°)(4(), 0,0,0). (1.131)

The scattering amplitude then reads
iM = —ica(p )T (0, p)u(p)d(a)lgo—o- (1.132)

Then if we assume that the potential is roughly constant over a large volume of space we
have also ¢(q)|q~0. Therefore, in the limit ¢g* — 0 we have

T (p,p")]g0=0, g0 = ¥ F1(0). (1.133)
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For slowly moving electrons hitting the static potential of the nucleus we can use the
non-relativistic approximation

a(p' )7 u(p) = u! (p)u(p) ~ 2me €. (1.134)

Thus )
iM = —ieFy(0)d(q)2me €] q0- (1.135)

Finally, this result should be compared to the Born approximation (p|iT|p’) = —iV (q) for
the potential
V(r) = ed(x)F1(0), (1.136)

which gives the same answer as QED for a fixed potential. Here we can use the fact that
e is the charge at the subtraction point so in fact F;(0) = 1.

Magnetic case: Here we are interested in understanding the physics of F». Consider
therefore (again dropping class on the RHS)

A5 () = (0, A(r)). (1.137)

Since we in this case want to express the scattering amplitude in terms of the magnetic
field B(r) coupled to the spin S, we need to expand the quantities to linear order in the
momentum ¢*. To get the physics it is sufficient to use the non-relativistic approximation
of the spinors:

pio.i _ pio_i
ur(p) = VP o€ # VE(L = )6 un(p) = VP o # VE(L+ )6 (L138)
and similarly for @(p’). This gives, with E ~ m,
/
a(p)~ — (P9 i P 0
u(p)y'u(p) = 2mg ( 50 o )5. (1.139)

Picking up the ¢ terms and inserting them into the expression for the scattering amplitude

gives
1 . -
iM = —i2met't (—zmal(Fl(O) + FQ(O))) ¢B'(q)), (1.140)
where we obtained the magnetic field in the form
Bi(q) = —ie*¢d AX, _ (q). (1.141)

class

Comparing to the Born approximation again we find that it comes from the magnetic

moment interaction with potential energy
V(r) = () - B(r), (1.142)

where

(1) = ~(F1(0) + B(0))¢" 2 ¢. (1.143)
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From this expression we can determine the Lande’s g-factor from its definition

e

=g(=—)S. 1.144
n=9(5-)S (1.144)

Thus we find the g-factor to be given by
g =2(F1(0) + F»(0)) = 2+ 2F5(0), (1.145)

where we have used the fact that F;(0) = 1 at the subtraction point ¢* = 0 in renormalised
QED. This result is often presented as an expression for g — 2 which is the so called
anomalous magnetic moment, i.e.,

g—2=2F(0). (1.146)

The RHS starts at one loop order, i.e., at O(a), but can be computed to arbitrary order
in the fine structure constant and we will obtain the first term below. The computation of
g—2 and the comparison to experiments is often quoted as one of the most accurate results
in natural science and the discrepancy between theory and the measured value arises at the
11th or 12th decimal point. This is discussed by David Gross at 2011 Solvay conference
which you are strongly recommended to have a look at as part of the course. To indicate
the complexity of this calculation there are about 1000 Feynman diagrams at the four-loop
order and 12.672 diagrams at the 5-loop order®.

Comment: The expression above defining the form factors F; and Fb can in fact be
extended if parity invariance and time-reversal symmetry are not assumed to hold. This
situation is the one encountered for the weak nuclear forces with gauge group SU(2) in the
standard model so this might be a relevant thing to do in a context that is more general
than just QED. So dropping this assumption we can also use tensors that break parity and
time-reversal symmetry, that is €#*?° and ~°. This leads to

2

1 (qu_i

ot qy
*om om

2m

T(p,p') =" Fi(¢®) + F3(q%) + i€ 0,00, F3(q°) V) Falg?).
(1.147)

In particular, Fj3, the electric dipole moment, is of importance since if non-zero it
implies CP violation which is required in the study of the early universe to explain the

matter-antimatter asymmetry that we observe in the universe today®.

5See hep-th 1208.6583 and CERN news April 2017.
5See FEckel et al, physics.atom-ph/1208.4420 (in Phys Rev Letters 109 (2012) 193003).
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The vertex at one loop

We now turn to the actual evaluation of the vertex function at first loop order. The
diagram is

(1.148)

which generates the following expression for the one-loop correction dT#(p, p’) to the tree-
result TH(p, p')|tree = ¥ (with k' = k + q):

4 —igy _ .y 1 ! m 1 m X
o e p) = / (gw];‘l (p— k?2p+ e lp)(iey )k/ﬁ ;:2 +) i (—%;ﬂ +) e (Tt )ulp)
(1.149)
oo [ A% a(®) (FyF +mPy = 2m(E 4 K")) u(p)
= zie /(27r)4 (p— k)2 + i) (k% — m? + i€) (K — m? + ic) (1.150)

Note that the first vertex is contracted into the third by the metric from the photon propa-
gator in the loop. This makes it possible to use the identities (derived in previous lectures)

VAt = =298, 4Py, = 0 and K Py, = —2kyHE

Doing this integral is not easy but we have already used the methods needed in the simpler
context of the ¢* theory. The steps used there can be applied again although this time
they will require some generalisation. First, we note that the vertex integral has three
propagators and we have only consider loops with two propagators before. This means
that we must derive a version of the Feynman parameter trick that can cope with three
propagators. Recall the formula we used previously with one Feynman parameter z:

1 1 1 1 1 1
R _ Sy 1.151
AB /0 du (A + (1 —2)B)? /0 d‘r/o dyd(w +y )(J:A—l—yB)2’ (1.151)

where we have introduced a second parameter y in a trivial manner since it can be elim-

inated directly using the J-function. However, this second version has a generalisation to
any number n of Feynman parameters:

1 j—
A A,

(n—1)!
(:ElAl + ..+ .Z‘nAn)n

1
/ dzy...dzy, 6(xy + ....wp — 1) (1.152)
0
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The proof is a bit messy but is most easily done using induction. The proof is not that
important for the rest of the course but here it is:

It is obviously true for n = 2 from above so we should assume it is true for some arbitrary
n and prove that it is also true for n + 1. The first step is to multiply the above general
formula by % which gives (renaming the the z;-parameters z;)

ot
AAL A,

(n—1)!

1
0

where all sums run over ¢ =1,2,.....n.

Then second step is to apply n — 1 B-derivatives (8%)"_1 to the above equation for ﬁ.
This gives

-1
AB” /d:c/ dyo(x +y— )( A—|—yB)"+1 (1.154)

The by setting B = ¥;7; A; we get the integrand in the previous formula which can thus
be written as

1 1 1 1, m—1
_ _ _ ny
= —1 AT, 0(2;2;—1 — . (1.1
/0 dx/o dy é(z+y )/0 dzy...dT, 6(X;x )($A+yzixi14i)n+1 (1.155)

The final step is to use the §(z + y — 1) to do the y-integral which gives y = 1 — z and

hence

b
AAL A,

n!(1 —x)" !

1
:/ dxdzq...dZ, (5(22:@ — 1) (1.156)
0

That this is the correct result which proves the induction step becomes clear by the sub-
stitution z; = (1 — x)Z;, and noting that the measure becomes

d"zo(3;z; — 1)(1 — x)"fl =d"z (5(1 T 1) ] =d"z0(X;z; — (1 —x)) =d"zxo(x + Xix; — 1).
-z -
(1.157)
Thus we get
! ey din o § 1 n! 1.158
- = .dzn, + ... — . (1.
Ay Ana /O T1---AFnt1 (xl Tnt ) ($1A1 + ...+ a:n+1An+1)n+1 ( )

which is the same formula as above but now for n + 1 factors.

The version we need in the vertex integral is the one with three parameters x, y, z. We
then get the propagator factors in the form

1 2
drdydz 6 -1 , (1.159
((k:—p)QJrie)(k;’?fm2+i6)(k27m2+26 / wdydz 6(z +y + 2 )D3 ( )
where
D = I(k;2 _ m2) +y(k/2 . m2) + Z((k _p)2) + (l‘ +y+2’)’i6. (1160)
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If we use the fact that x+y+2z = 1 and perform a shift of the momentum & to [ := k+yq—=zp
this expression simplifies to

D =1?>—-A+ie, where A:=—ay¢® + (1 —2)m? (1.161)
Note that since ¢?> < 0 we see that A > 0 and hence A can be regarded as an addition to

the mass (in the second term).

Next we turn to the expression in the numerator of the integral in the vertex function.
Since the denominator after the momentum shift is an even function of [ (it depends only
on [?) the whole integrand will contain an odd part proportional to I* and an even part
proportional to I#1¥:

dil e dil M a4l Lgmvi2
/ —0, / :/ 9 7 (1.162)
(2m)4 D3 (2m)* D3 (2m)* D3

The first result follows directly since the integrand is an odd function of each component

of I*. The second one is true since when integrating over the angles in momentum space
one obtains a covariant direction independent result which can be expressed as the RHS
(one can contract the indices to check the coefficient).

The numerator can be simplified further by using the manipulations (Dirac equation etc)
used above to arrive at the general vertex expression

ot qy

2m

T (p,p') =" Fi(¢®) + F(q?). (1.163)

Doing this we find (after some work) that the numerator is

u(p) (’Y“(—;ZQ + (1 —2)(1—y)g* + (1 — 22 — 2*)m?) + (p" + p*)mz(z — 1)) u(p)
+a(p')(g"m(z — 2)(z — y))u(p). (1.164)

We have written the last term separately since we know from the application of the Ward
identity that a term proportional to ¢* (without o#*) must vanish. Here we can check that
fact: The integral over the Feynman parameters  and y is symmetric in x <> y while the
last term above is odd and hence vanishes.

To get this expression into a form useful for the physics interpretation we use again the
Gordon identity. This gives the final version of the vertex correction at one loop:

4 1
a(p')STH(p', p)u(p) = 2i62/ (;ﬂ§4 /0 dedydzé(x +y + 2z — 1)%
— 1o 2 2\, 2 iochqy 2
<) (-5 (1= D)L= 0 + (L 42— 2)) + (1 - 2) ) ()

(1.165)
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where
D=017—-A+ie, A=—ayg®+(1—2)>*m*>0. (1.166)
Looking at this result we can start identifying the contributions to the form factors F; and

Fy.

At this point we can start using techniques that we developed in the context of ¢*
theory: Wick rotation and the three kinds of regularisation method. The reason we need
to regularise is, as we have already noticed, the vertex function is log A (cut-off) divergent.
Performing the Wick rotation as usual by setting

0=, 12=-1%, (1.167)

and using our previously obtained result for the angular integrals in d = 4, namely [ dQ4 =
272, we get for the two integrals that appear in the expression:

d*l 1 —i2r? [° 3
dlp—y—L——s. 1.168
/ @n)f (Z—A)P () /0 RGEWNE (1.168)
which is finite, while the following one is infinite
il 12 i2m? [ 13
dlp——L—s. 1.169
/(27r)4 (12 — A)3 - (2m)4 /0 E(l% + A)3 ( )

We choose here (following PS) to apply the method of Pauli-Villars to the photon
propagator in the loop integral. Thus
1 . 1 1
(k—p)2+ie (k—p)?2+ie (k—p)2—A%+ie

where we have introduced a heavy ghost photon with mass A (again following PS) with

(1.170)

a minus sign in front of its propagator. These two terms then cancel each other for very
large momenta k turning the integral UV finite.

Finally, we obtain the following results for the renormalised form factors at order O(«).
After an infinite subtraction at ¢# = 0 in the case of F, it reads’

1
Fl(q2)21+2C:T/ dedydzd(z +y+2—1)
0

! m2(1 — z)? m2(1 —4z+2%) + *(1 — z)(1 —y) m2(1 — 4z + 2?%)
g <°g(m2<1 - oy m2(1 - 2)% - Py T m(1 -2 - q?xy> ’
(1.171)

where we see explicitly that setting ¢* = 0 reduces this result to F7(0) = 1. In the case of
F5 no subtraction in needed so the result is given directly by the QED calculation which
gives

(1.172)

1 9 9 L

m*(1 = z)? — ¢*zy

"The small photon ghost mass x that is used in PS to make the integral regular in the IR is not relevant
for our discussion and has therefore been set to zero here.
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In view of the fact that F5 is not involved in the renormalisation it is reassuring that the
final answer in this case is finite at both UV and IR. We are interested in comparing this
result to experiments at low energies so we need

a ! m2z(1 — z
Fy(¢* =0) = %/0 dedydzé(x +y+ 2z — 1) <2m?(1(1—z)2)> : (1.173)

The integrals over the Feynman parameters can now be done (over a flat triangular surface
between the three points (1,0,0), (0,1,0) and (0,0,1)): Simplifying the integrand and
using the d-function to do the z integral reduces the integral to a triangle in the yz-plane:

1 1—z 1
BPZ=0=2] 4 d i :O‘/d — 1.174
=0 =2 [ [ () <5 [aem g aam

Recalling the relation found above between F5 and the g — 2 anomalous magnetic moment
we find, to order O(«),

9-2=20(F =0)=ac:= L = B(0) = 23 ~ 0.0011614, (1.175)
T
which may be compared to the experimental value ac"” ~ 0.0011597. This theoretical value

was obtained by Schwinger in 1948. You should recall the words of David Gross at the
2011 Solvay conference! Read also PS, pages 196 - 198 (note the last two sentences).
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parameter ends up in the numerator inside the log is the negative sign of the kinetic term
of the Pauli-Villars ghost particle.

Now we should add the counterterm graph using the Feynman rule i(pdz — ;) to the
above —iX(.2)(p) and implement the renormalisation conditions at the subtraction point

p:m:

E(p)lp=m =0, C;;E(p)l,ﬁ:m =0. (1.197)

Evaluated at the subtraction point we have

am 1 (L’A2
Sy () lpom = S /0 dz(2 — ) log <(1> (1.198)

_ x)2m2

which must be canceled by the mass counterterm, while the p derivative at the subtraction
point gives (using d%p2 = 2p)

o 1 A2 —z)x
<ijz(e2)(p)> ’]b:m = o dx (‘x log <(1 —m? i\x@ — x)p2> ‘p:m + 2(21—m)>

a (! zA? (2—2x)x
— —z 1 S - . 1.1
o Odw( x Og((l—x)2m2>+2 —a (1.199)

Adding the counter term to the analysis gives the equation

—i%2)(p) +i(poa — 0m) =0, at p=m (1.200)

where as above —iE(ez)(p) is only the self-energy diagram (i.e., without the counterterm).
Thus
Y(e2)(p) = po2 — O, at p=m. (1.201)

Using the expansion around p = m, that is

d
S ety () = S(m)|ea + (p —m) (dpﬂ(p)\ez> A (1.202)
the above renormalisation conditions for the mass m and 1 at the subtraction point p = m
then imply

b = oy — Sy (p = m), Gy = (C;;Z(EQ)(]))) | (1.203)

p=m

From this we conclude that the renormalised self-energy at order e? can be calculated
as follows:

()(P) = Eez)(p) — (P2 — 6m)

=Xz (p) — p (;;2(62)(19)) ‘lé:m +mdz — Sezy (p = m)
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— (S 9) ~ Zayom) ~ (o= m) ( ‘;z<ez>< ), (1.204)

Thus we see directly that this expression vanishes at the subtraction point p = m. Also, by
inserting the above expressions for the things appearing here we see that the regularisation
parameter A? cancels and we find

a

o / 1 dx(2m —ap) log <(1 - 905717%; :—U)j??(?f— x)p2>

p m/dx 2=a)w (1.205)

1—=x

(e (p) =

Some of the analogous equations obtained using dimensional regularisation are given
in PS on page 333.

In our previous discussion of renormalised QED we made the observation that gauge
invariance implies a relation between multiplicative renormalisation constants, namely Z; =
Zs. We are now able to check if this condition is satisfied by our one-loop calculations,
that is, the ones giving the order e? corrections to the vertex and the Dirac self-energy. We
will verify this by comparing the vertex and Dirac propagator corrections in the form

851 = 8. (1.206)

Thus we have to return to the vertex function calculation in the previous lecture to find
01. In fact, ;1 is determined by the subtraction point condition

STH(q* = 0) + "6, = 0. (1.207)
This implies in terms of the form factor F;(Q?)
F1(0) + 61 =0. (1.208)

Hence, in 1 at this order in e, the coefficient multiplying the divergent factor log A? is

a [! a [! -z 1 «
- dxdydzo —1)=—— d dy = —= —. 1.2
277/0 xdydzé(x +y + 2z —1) 277/0 x/o y 5 o (1.209)

From above we find that the coefficient multiplying the divergent factor log A2 in d is

(07

«o
— — 1.210
2 2 ( )

N =

(~2) = -

Obviously the divergent parts coincide after performing the integrations over the Feynman
parameters. Also the finite parts can be manipulated a bit and seen to be equal (see
PS pages 221 - 222). We have thus verified the validity of the Ward identity to this
order in perturbation theory (which can be proven to all orders) based on dimensional
regularisation.
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One should now investigate the pole and branch cut structure of the result for 22’:%

found above. These features come from the p? dependent log factor, in particular from
Sk lpe oc log((1 = z)m? — z(1 — x)p?). (1.211)

If we introduce a small mass term u for the physical photon to keep track of it in the
expression for the propagator the above log factor becomes

S(eH e oc log((1 = )m?® + ap? — x(1 — 2)p?). (1.212)

Now recall that log functions for negative arguments have a branch cut. This is seen for

positive r from log(—r) = log(eT"™r) = +ir + logr which shows that there is a branch cut

in the complex r plane starting at the origin and runs along the negative r axis.

So setting the argument above equal to zero to check where the branch cut starts we
need to solve
(1—2)m? +zp? —z(1—z)p? =0, (1.213)

for  between 0 and 1. Note that for any x there is a real solution for some values of p?.
The solutions are

1 m? u? 1
L N
T=g g T2 T g

(p? — (m+ p)?)(P? — (m — p)?). (1.214)

From this conclude that the minimum value of p? which gives real values of x is

P’ = (m+p)?, (1.215)
which corresponds to the threshold where an electron and a photon with mass p can be
created. This is where the branch cut in the complex p? plane starts.

This is a general phenomena which is best investigated by looking at the complete
propagator, not even assuming perturbation theory. We will carry out this in the context
of a scalar field (following PS) since the general conclusions are very much the same for all
spins. Thus consider the exact scalar two-point function

(QUTo(2)()|2) = Oz — 3°)(Qe(2)o(y)IQ) + B(y° — 2°)(Qd(y)d(2)|Q).  (1.216)

Note that the field ¢(z) is the exact one in the interacting theory previously denoted ¢¢*%<t.
We now insert a unit matrix in full Hilbert space, i.e., it is a sum/integral over all one- and
multi-particle states denoted |Ap). Since the momentum p can be generated by a boost
from the p = 0 state |\o) this gives, for the 2° > " term,

d3p

TEy AT @R el (1217)

@oa)owI) =2
Here the sum (or integral) over A refers to all states which differ not just by their three-

momentum but due to other features like number of particles or values of charges. The
different momentum states of the same type are included by the momentum integral.
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T ()] o — d'k (KR +q7) + (R + ") = g (k- (k + ) —m?)
(@)l = ‘462/(2@4 ( (2 —m? T ie)((k + )2 — m2 + i) ) |
(1.226)

which is indeed symmetric in pv although this was not obvious before the trace was done.

To deal with the momentum integral the next standard step is to introduce Feynman
parameters. This gives, dropping i€,

1 1 1 1 1
(T (e Rl A v e e e (e Rl A2
(1.227)
where (compare to PS!)

D=k -m?+(1-2)¢*+(1—2)2-q. (1.228)

Now we shift the integration variables k* to get rid of the mixed terms with ¢*: i.e., set
" =k*+ (1 — x)g". This gives (compare to PS again)

D=101?—-A, where A=m?—z(1-xz)¢. (1.229)
Performing the same substitution in the numerator N gives
N = 21" — g™ 1% — 22(1 — x)¢"q” + g"*(m? + (1 — x)¢?). (1.230)

Here we note two things: A is not the expression that shows up in N (wrong relative
sign) and, a bit surprisingly, the g-dependent terms in N do not give the combination
?g" — q*q¢¥ that we found was needed to satisfy the Ward identity (a relative factor 2
wrong).

Next we Wick rotate by setting [0 = ilOE and use the fact that the momentum integral
replaces the integral over [#I¥ by one over %g’“’lQ, or —%g’w l% after Wick rotation. This

S o [t d*lp
1" (q) |2 = —4262/0 dx / (27)4><

—3g" 13 + g3 — 22(1 — 2)gtg” + g" (m? + (1 — )¢?)
(% +A)? '

gives

(1.231)

As noted above this expression seems problematic: Using cut-off regularisation both the
A? and the log A divergent terms violate the Ward identity. Note that renormalisation
using the counterterms does not help since they come from d3(F ;;,/)2 and therefore the
corresponding Feynman rule will contain the operator ¢>¢g"” — g*¢”. The conclusion is that
cut-off regularisation does not work in accordance with our previous conclusions.

Can some other regularisation do the jobb correctly? It is known that Pauli-Villars does
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respect gauge invariance and hence should work. This method is used in the book by
Bjorken and Drell (1964) and does work but turns out to be quite complicated. A better
approach is perhaps to use dimensional regularisation but how can that method fix the
above issues? It does indeed fix the problem but in what seems to be a rather miraculous
way!

In dimensional regularisation one of the main features is the following replacement
1
Y — gZQg’“’, where d =4 — . (1.232)

This means that the A? divergent terms are changed to

d'lp (=3 + 1)g™1;
/ e (=7 +1)g"ig (1.233)

(2m)t (I3 +A)?

Applying the usual methods in dimensional regularisation this integral becomes

Py DB LadT(-9) (1)%
/ (2754 (2 vy 7 2(2) () " 250

This leads to the following coefficient of the metric gH":

2.d d d d d
(1= 25T —5)=~(1—- T~ 3)=-T2~3). (1.235)

i —4ie? 1
M@l =~ [
(4m)2 0

which implies that

1\°72
re-9 () ((=Ag") + (—22(1 — 2)g"q” + g" (m* + x(1 — x)¢?))) . (1.236)

Recalling the comments above we see here that this expression means that the problems
are solved: With A = m? — z(1 — x)q? inserted in the first term we find that the m? terms

cancel and the ¢? terms add. Thus the Ward identity is satisfied since
i (q)]e2 = (9"¢* = ¢"¢”)iTL(¢%)]e2, (1.237)
where
2 2 4 [ dyAd—2
II(¢°)|e2 = —8e”(4m)2 / drz(l—z)T(2 - 5)A2 (1.238)
0
Exercise: Explain in words exactly what solved the problem with the Ward identity.

In order to renormalise the above expression we first identify the divergence and then
add the counterterm so that the renormalisation can be done at the subtraction point

which is here ¢ = 0. Inserting d = 4 — € and letting e — 0 we get, with o = %,
2 20( 1 2
(¢°)]ez = —— [ drz(l—z)(2—v—logA), (1.239)
™ Jo
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always inserted between two QED vertices (as in the second diagram in the beginning). The
photon line has momentum ¢* and hence the second term above containing ¢,q, vanishes
due to the Ward identity satisfied by the vertices.

We therefore conclude that the physics is fully contained in the following equation for

- _;92“” (1 — 111(q2)> . (1.248)

The multiplicative renormalisation constant for the photon propagator, Zs, is then given

the photon propagator

at the subtraction point ¢?> = 0 by

1

Z3= —— .
ST 1-T(¢2=0)

(1.249)
We can also draw the very important conclusion that no mass term for the photon is gener-
ated in perturbation theory since I1(¢?) has no q%—pole (since II(g?) is 1PI). The geometric
sum discussion above is carried out before the transition to the renormalised Lagrangian.
The result above tell us to define the renormalised vector potential by A, := /ZAL and
then define 03 = Z3 — 1 taking the final step needed to obtain the renormalised Lagrangian
quoted above. In the renormalised theory, after adding the counterterm, the renormalisa-
tion condition at the subtraction point for the vertex function implies, as discussed before,

" (¢*> = 0) = 0. (1.250)

Finally, and most importantly, the effective coupling constant, or fine structure con-
stant, in the scattering of two charged particles is

a

acrr(q?) = T Tren ()’ (1.251)

The observed coupling constant is therefore momentum, or length scale, dependent due to
what is called vacuum polarisation, which at order e? is just the fermion loop.

To get an intuitive understanding of this result will be our last, and perhaps most im-
portant, task in this course. So let us return to the renormalised one-loop result for II(¢?)
that we obtained above

200 (1 m?
M (q*) e = —— [ dzz(l—2)] . 1.252
(q )‘62 T Jo .CL‘JI( JJ) og m2—a:(1—a:)q2 ( )
First we note that it behaves as it should at the subtraction point ¢ = 0:
" (¢> = 0.2 = 0. (1.253)

Below we will discuss the physics in the two separate cases, first ¢> > 0 and then ¢ < 0.

For positive ¢ we deal with the s-channel and I1""(¢?)|,2 has a branch cut for big
enough ¢2. (Recall that log(—r) = 4im + logr.) This branch cut starts at the values of g2
that satisfies m? — z(1 — 2)¢? = 0, and hence depends on x. Note that there is no branch
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Then noting that % is the Fourier transform of the Coulomb potential we find that using
the effective charge obtained above the potential reads in QED instead

- d3q iq~r(_62) 1
V(r)—/(%)ge P (I_H?:%(_q%). (1.258)

Expanding the last factor as 1+ Hf:z) (—q?) + .. defines the QED correction of the standard

result in classical physics.

We start with small values |¢?| << m?. Then we have ¢* = (0,q) and 0 < q? << m?.
This situation corresponds to long distances compared to the Compton wave length, i.e.,
range(‘)(‘;%, where the Compton wave length is given by A¢g = % = 2.4-10""2m for the
electron mass m.

To compute this correction we need the following expansion valid for small ¢2/m?:
2

m 2 2
log o o(1—2)g® —log(1 — (1 — 2)7z) = a(l — 2) 7z (1.259)

This means that the correction in this case has no ¢g-dependence and will therefore lead to
d-function in space. Then using also

1
1
drz?(1 —z2)? = — 1.260
/OM’( ) 30" ( )

we get the following result for small negative ¢? (length scales much larger than the Comp-
ton wave length)

53(r). (1.261)

Atomic energy levels: The second term in the potential above is the correction to
the classical potential related to the first term —%. Therefore it is of interest to compute
the size of the second term to see if that can be seen in experiments. The shift in atomic
energy levels due to the new term is

402
15m?2

[(0)]*. (1.262)

AE = /d3r|1/}(r)|25V(r) =

Here 9 (r) is the electron wave function whose value at the origin, i.e., at the location of
the nucleus, enters the final result. This value can be computed and an estimate of AF is
obtained, as part of the so called Lamb shift,:

AE ~—1.1-10""eV. (1.263)

There are other contributions to the Lamb shift and the one found here is about 1/40 of

the total value which is very well established experimentally.

In hydrogen we have: recall the size of the lowest energy level: —13.6 eV
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1) Es, = E3, : basic QM result (i.e., E depends only on n, the level quantum number)
2) Ezp,,, # Eop, ,+ spin-orbit effect,
3) Ess,,, # Eop, ,: Lamb shift (vacuum polarisation etc).

A more careful calculation gives, with @ := |q|, after doing the angular integrals,
i62 OO QZ@iQT ren 2
V(r) = (2m)2r /_OO de(l + H(€2)(—Q ) —0 (1.264)

which can be computed and seen to give the so called Uhling potential, valid for a range
1

similar to /\Compton = mo

a o 6—2mr

oV (r) = T avE (2

(1.265)

Finally, for the ”very space-like” momentum —¢? >> m? which means |q|?> >> (¢°)?+

m? ~ m? and thus very short distances, we have

2 e m2
log o ¢ > ~— log(—m) —logz(l —z)+ (’)(—q—Z). (1.266)
In terms of the renormalised photon self-energy this implies
2 2
« q 5) m
?:én)(qz) ~ g <10g(—7n2) — g + O(—q2)> . (1267)
Inserting this result into the effective coupling constant we get
a?g)(qQ) = a —, where A =¢"/3, (1.268)

-2 log(—#)

This is the coupling constant observed when scattering for instance electrons off a
heavy charged object. It depends on the energy of the scattering electrons, or the energy
of the photon in the t-channel diagram describing the scattering process. The increase in
effective charge is about 5 percent going from close to zero energy to 30 GeV. The more
energy one gives the electrons, and hence the photons, the deeper into the potential of the
nucleus one can penetrate, and see the increase in the effective charge of the nucleus.

The reason this effect is referred to as vacuum polarisation is that one can develop
an intuitive picture that explains why the observed charge increases with increasing en-
ergy, and shorter wave length of the photons. Imagining that the nucleus has infinite, or a
very large, charge and that in the field of this charge there are created ete™ pairs out of the
vacuum that survive just long enough not to violate the Heisenberg uncertainty principle.
This picture corresponds to the fermion loop in the photon self-energy calculation we did
above.

Having accepted that there appear ete™ pairs out of the vacuum in the vicinity of the
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charged nucleus it is also clear that the central huge charge will polarise this cloud of eTe™
pairs to screen its own charge. Thus when studied with low energy photons, having long
wave lengths, the charge of the nucleus is seen together with the polarised cloud and the
ordinary low energy value of the charge is obtained.

Increasing the energy of the photons, giving them shorter wavelengths, they can see finer
and finer details of the cloud and thus by coming closer to the charge of the nucleus they are
less affected by the screening et e~ pairs and thus see more of the huge charge of the nucleus.

Comment: The one-loop result explained in this way does however lead to a huge prob-
lem: the Landau pole:

aff = 0o at A, = —¢® ~ 10?86 eV, This is of course not a problem for experiments
but it is a problem in principle and must be resolved somehow in a fundamental theory of
elementary particles: Options are either

a) it is eliminated when higher order loop corrections are added, or

b) QED is trivial (i.e., free) and must be part of the non-abelian more fundamental asymp-
totically free theory:

The Landau pole energy A; depends heavily on the particle content of the theory it is part
of®:

1) Electrons only: Af ~ 10%?"GeV.

2) Standard Model: Ay ~ 1034GeV.

3) MSSM: Ay ~ 102°GeV. (MSSM=Minimal Supersymmetric Standard Model)

4) MSSM with 4 Higgses: Ay =~ 1017GeV.

Recall that the GUT scale is ~ 10'7GeV and the Planck scale ~ 10°GeV.

Comment: If the self-energy diagram is computed in QCD, i.e., in a non-abelian gauge
theory, it comes out with the opposite sign! This sign was computed, after a lot of effort
and problems, by Gross, Politzer and Wilczek in the 1970s and they got the Nobel Prize
for this in 2004. In the spirit of the the above picture of screening we have in QCD instead
anti-screening. This means that at high energies the effective charges of the quarks decrease
and eventually at very high energies they become free. This is verified in experiments and
is called asymptotic freedom. Instead there is an increase in the charge at low energies
leading to quark confinement, i.e., the fact that quarks can not appear on their own,
only as part of hadrons (protons, neutrons, pions, etc). Trying to pull two quarks in a pion
apart will just result in a rubber-band-like potential storing more and more energy until
it snaps. When this happens a a quark-antiquark pair is created and thus just two new
hadrons. The struggle to understand this rubber-band feature of QCD was historically
what led to the development of string theory. It was only later that string theory was
reinterpreted as a theory of quantum gravity. The hadron problem remains unsolved.

Comment: If the production of eTe™ pairs out of the vacuum occurs close to a black

8See Gockeler et al,hep-th/9712244.
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hole one of the two particles of the pair might cross the horizon before the time is up
for their existence according to the uncertainty principle. If this happens the remaining
particle must become a physical one and be able to travel away from the black hole. This
is one way to understand Hawking radiation that is often used in the literature.

Comment: In the Standard Model there are three different gauge groups U (1) x SU(2) x
SU(3) each with its own energy dependent coupling constant. Due to the sign difference
mentioned above and discovered by Gross et al, the three coupling constants actually tend
to come closer and closer to each other as the energy is increased. Theoretically they almost
merge at the GUT scale 10'7 GeV. Adding supersymmetry to the story makes this strange
merger even more exact providing one important argument in favour of supersymmetry.
Unfortunately, no direct experimental evidence for supersymmetric has been discovered so
far.

Comment on Effective field theory”: We will conclude by a brief discussion about
the deep issue what renormalisability really means physically'?. The whole issue concerns
the cut-off at energy scales so high that we can never reach them and where new for us
unknown physics can set in. There are even known physics at extremely high energy scales
that we have not taken into account when doing the loop integrals and taking the cut-off
A — 00. One such scale is the Planck scale at E ~ 10'9GeV where gravity becomes strong
and its quantum effects must be incorporated into the discussion of (perhaps) any physi-
cal process. Using some physically motivated cut-off scale and keeping non-renormalisable
terms gives a theory that we call ”effective field theory”.

Replacing the cut-off regularisation by other schemes, like Pauli-Villars and dimen-
sional regularisation, does not help since these do not contain any restrictions at all on the
loop momenta. One place where using a cut-off presents a real problem is in the Higgs
sector of the Standard Model. If we cut-off the snail diagram at some high but physically
relevant energy like the Planck scale, then the snail diagram, being A? divergent, will add
A? to the Higgs mass at one-loop level. This will obviously destroy any pre-set value of
the Higgs mass unless it is fine-tuned to precisely cancel the huge loop contribution. It is
believed that this is not a natural thing to be forced to do.

One aspect of the existence of this very high scale in gravity is the so called hierarchy
problem. This name refers to the fact that Nature uses several energy scales that are
vastly different. E.g., the weak scale (where the SU(2) gauge symmetry is broken in the
Standard Model) is around 100 GeV while the Planck scale (where gravity becomes strong
and quantum gravity sets in) is around 10 GeV, and we are no idea how to explain this.
There are even other energy scales that also can not be explained, like the GUT scale at
10'7 GeV (if it exists) and a possible one around 1/100 eV to 1 eV which is relevant for
both neutrinos and the cosmological constant (another mysterious coincidence).

In effective field theories one accepts the presence of non-renormalisable terms in the

9See pages 266 and 800 in PS for some very brief comments.
0You may read more about this in the recent review by Ben Gripaios, ArXiv:hep-th/2005.06355. You
can read sections 4 and 5 with your present knowledge of the subject.
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Lagrangian (as in gravity) and just determines their coefficients by experiments if needed at
the accuracy your are working. The theory is then only defined up to a certain energy scale
and there is no fundamental understanding of the structure of the theory at the quantum
level.

One example of this is provided by the old ”Fermi theory” in which one used a fun-
damental four-fermi vertex to explain the observed physics at low energies, a vertex that
we now know is not renormalisable. At energies much below 100 GeV this worked fine
but when the enrgy in scattering processes were getting closer to this value problems with
unitarity and things appeared. To us this should not be surprising since we know that
the reason for these problems is that we have used the massive propagators in between
the vertices, which in the case of weak interactions in the Standard Model come from the
massive vector bosons Z°, W*. At low energies this follows simply from

ﬁ = # (1.269)

One might try to resolve the non-renormalisability problem in gravity the same way,
i.e., by inserting massive progagators to turn four- and higher points vertices into collections
of three-vertices but this seems extremely complicated. However, this is precisely what
string does but it then requires the introduction of an infinite set of new heavy particles.
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