Course syllabus


DAT405 / DIT405 Introduction to data science and AI Study Period 2 2020/2021 (7.5 credits)

Course is offered by the department of Computer Science and Engineering

Course aim

The course gives a broad introduction to various techniques and theories used in Data Science and Artificial Intelligence (AI), with particular focus on their practical applications.


Please contact Selpi (course responsible) for general questions about the course.

For questions related to groups in Canvas, lab-sessions, assignment submissions, please contact  Adam (teaching assistant).

Teaching team

Examiner: Claes Strannegård (claes.strannegard at

Course responsible: Selpi (selpi at

Lecturer for modules 1, 2, 3, and 8: Selpi (selpi at

Lecturer for modules 4, 5, 6, and 7: Simon Olsson (simonols at

Teaching assistants: 

Adam Breitholtz (adambre at

Anton Matsson (antmats at

David Bosch (davidbos at

Emilio Jorge (emilio.jorge at

Adnan Fazlinovic

Alexander Gunnarsson

Azadeh Karimisefat

Johannes Backlund



DAT405 TimeEdit

DIT405 TimeEdit

Note that the lecture days and times are not always the same every week, please check the schedule carefully.

Zoom links to each session can be found under Home.


Course organisation

The course is divided into three parts:

  • Part I: Introduction to data science (3 modules)
  • Part II: Statistical methods in data science and AI (2 modules)
  • Part III: Introduction to AI (3 modules)

Each part is in turn divided into several modules, with one assignment per module. The assignments are performed in student pairs.

Module Topic
1 Introduction to Data Science. Getting started with Python
2 Regression and classification
3 Clustering
4 Bayesian statistics and graphical models
5 Markov models, kernel methods and decision trees
6 Introduction to AI and its ethics
7 Machine learning and neural networks
8 Rule-based AI


Course literature

The page for each module contains links to lecture slides and other supplementary material, including some links to video material. There are no required textbooks for this course, but the following books can be consulted.

Data Science


Statistical methods for data science and AI


Changes made since the last occasion 

Updated/revised/changed assignments. No other substantial changes in modules' content.


Learning objectives and syllabus

Learning objectives:


On successful completion of the course the student will be able to:
Knowledge and understanding
  • describe fundamental types of problems and main approaches in data science and AI
  • give examples of data science and AI applications from different contexts 
  • give examples of how stochastic models and machine learning (ML) are applied in data science and AI
  • explain basic concepts in classical AI, and the relationship between logical and data driven, ML-based approaches within AI.
  • briefly explain the historical development of AI, what is possible today and discuss possible future development.
Skills and abilities
  • use appropriate programming libraries and techniques to implement basic transformations, visualizations and analyses of example data 
  • identify appropriate types of analysis problems for some concrete data science applications 
  • implement some types of stochastic models and apply them in data science and AI applications
  • implement and/or use AI-tools for search, planning and problem solving
  • apply simple machine learning methods implemented in a standard library
Judgement and approach
  • justify which type of statistical method is applicable for the most common types of experiments in data science applications 
  • discuss advantages and drawbacks of different types of approaches and models within data science and AI.
  • reflect on inherent limitations of data science methods and how the misuse of statistical techniques can lead to dubious conclusions 
  • critically analyze and discuss data science and AI applications with respect to ethics, privacy and societal impact
  • show a reflective attitude in all learning

Link to the syllabus on Studieportalen.

Study plan - Chalmers

Study plan - GU


The examination is through assignments, executed in student pairs. If some people are in groups of their own we might join them together. If you have trouble finding a partner to do the assignments with, please make a post in the Discussions tab so you and the other(s) in a similar situation can contact each other.

Deadline for each module's assignment can be found in the Assignments tab.

Examination form

The course is examined through 8 assignments. Grading will be based on a qualitative assessment of each assignment. It is important to:

  • Present clear arguments
  • Present the results in a pedagogical way
    • Should it be table/plot? What kind of plot? Is everything clear and easy to understand?
  • Show understanding of the topics
  • Give correct solutions.
  • Make sure that the code is well commented.
    • Important parts of the code should be included in the running text and the full code uploaded to Canvas.

To obtain a Pass grade or higher you must pass all of the assignments.

The final grade is based on an overall assessment at the end of the course.

Course summary:

Date Details Due