Course syllabus

The course will be given in English this year. However, feel free to use Swedish when contacting either me or Christoffer with questions. (See further down the page for course information in Swedish.)

 

Contact information

Tom Blackburn (examiner): tom.blackburn@physics.gu.se

I will keep office hours between 1300 and 1430 on Fridays: you can reach me over Zoom via this link. (id: 620 2846 3100, pwd: 091189).

Christoffer Olofsson (exercise class leader): christoffer.oloffson@physics.gu.se

Mathias Arvidsson and Lovisa Åkesson (course representatives, Tf): matharv@student.chalmers.se and lovakes@student.chalmers.se

Johan Nilsson and Erik Sahlin (course representatives, Kf): johne@student.chalmers.se and saherik@student.chalmers.se

 

Purpose

Your first course in quantum mechanics is intended for you to develop an understanding of the experimental necessity of wave-particle duality and a quantised description of matter and radiation. You will become familiar with using basic quantum-mechanical concepts and methods to solve model problems, as well as how these models are linked to experiments. You will be able to appreciate quantum mechanics' larger role in the description of fundamental physical systems and its technological applications. This will be realised through exercises and project work.

 

Schedule

See the calendar in TimeEdit or in Schedule.

 

Reading

Griffiths, Introduction to Quantum Mechanics (3rd edition)

 

Structure

The course consists of two lectures and one exercise class a week, on Mondays and Thursdays respectively. The exercise classes are intended to help you build on, and practise with, the knowledge you have gained. We will go through the material covered in the previous week's lectures and the associated exercise sheets. Exercise sheets will be uploaded on Monday for the next week. You reach me or Christoffer by email at the addresses above. I will maintain office hours on Friday mornings if you prefer to discuss one-on-one, over Zoom.

 

Learning outcomes

  • Account for the basic principles of quantum mechanics.
  • Understand specific quantum mechanical phenomena, including entanglement, uncertainty and tunnelling.
  • Apply quantum mechanical formalism to describe and predict the behaviour of important systems, including particle properties such as spin and polarisation, as well as motion in one-dimensional potential wells and the Coulomb potential.
  • Use perturbation theory to predict more general systems.

 

Examination

Your grade will be determined by how well you do on four hand-in problem sheets (Hand-in 1, Hand-in 2, Hand-in 3 and Hand-in 4) and an exam. Each of the four hand-ins will count for 15% of the final grade (60% in total) and the exam for 40%. In order to pass the course, you must pass both the hand-ins and exam separately, i.e. you must achieve at least 40% of the total points available across the hand-ins and 40% of the total points available in the exam. (This is equivalent to achieving 24 points in the hand-ins and 16 points in the exam, taking the total points in the entire course to be 100.)  Your grade (3, 4, 5) is otherwise determined by your total score (out of 100), across both forms of assessment. If you are close to a grade boundary (within 4%) you may, at your preference, take an oral exam.

Some advice about the hand-ins can be found here.

Oral exams

Oral exams will be offered to students who are close to the pass boundary on the dugga, as well as to students who are close to the 3/4 and 4/5 boundaries on aggregated scores.

In the former case, the purpose is for you to demonstrate that you have acquired the knowledge required to pass the course. You will be asked about: formalism (probability amplitudes, states, wavefunctions and operators), solving the Schrodinger equations, and interpretation in terms of interference and the uncertainty principle, and at least one of: perturbation theory, the Stern-Gerlach experiment and the hydrogen atom. Questions will not be identical from student to student (as the exams do not all occur at the same time).

Students who have already passed will be asked to demonstrate that they have achieved a good or very good level of knowledge of the material covered. Among other things, you may expect to be asked about the same topics that featured on the exam.

No help materials are permitted, but I will provide you with the same formula sheet used on the exam itself.

Re-exams

There will be an opportunity to retake the dugga on Wednesday 5th January at 0830 (sign up here) and a further opportunity during week 33 (sign up by emailing me directly). You can also retake hand-ins during LP3 (sign up here): new hand-ins will be posted on 17/01/2022 and are due at the end of LP3 (18/03/2022). If, following a re-exam, your score falls close enough to a grade boundary to be eligible for an oral exam (see above), please contact me.

 


Kurs-PM

FUF040 Kvantfysik lp1 HT21 (6 hp)

Kursen ges av institutionen för Fysik

 

Kontaktuppgifter

Tom Blackburn (examinator): tom.blackburn@physics.gu.se

Christoffer Olofsson (räkneövningsledare): christoffer.oloffson@physics.gu.se

 

Kursens syfte

Denna första kurs, i ett block om två, avser att få deltagaren att inse den experimentella nödvändigheten av partikel-våg-dualismen och av en kvantiserad beskrivning av materia och strålning, att bekanta sig med och använda grundläggande kvantmekaniska begrepp, storheter och metoder, att lösa modellproblem, att beskriva och tillämpa modellutveckling som ett växelspel mellan experiment och teori, att dra viktiga konsekvenser av den kvantmekaniska beskrivningen och tillämpa kvantfysiken på elementära fenomen, samt att identifiera kvantfysikens roll för den tekniska fysiken, inklusive högteknologiska tillämpningar. Kvantfysikens förverkligande i ett antal naturliga och artificiella system uppmärksammas i räkneuppgifter och projektarbete.

 

Schema

TimeEdit

 

Kurslitteratur

Griffiths, Introduction to Quantum Mechanics (3rd edition)

 

Kursens upplägg

Två förelasningar och en räkneövning i veckan. I räkneövningar täckar vi materialet som presenterades i föreläsningarna veckan innan.

 

Lärandemål

  • Redogöra för kvantfysikens grundläggande principer.
  • Förstå vissa specifikt kvantfysikaliska fenomen såsom sammanflätning, osäkerhetsrelationen och tunneleffekt.
  • Tillämpa den allmänna kvantformalismen på vissa viktiga system såsom fotonpolarisation, elektronspinn, den harmoniska oscillatorn, endimensionella potentialproblem och centralkraftspotentialer, i synnerhet Coulomb-potentialen.
  • Använda störningsteori för att analysera mer allmänna system.

 

Examination

Fyra obligatoriska inlämningsuppgifter (4 x 15%) och dugga (40%). För att bli godkänd, måste du klara båda upplämningsuppgifter och examen med minst 40%. Om du bli godkänd, bestäms ditt betyg av summan. Dugga ska äga rum v. 43. Information följer snart.

Länk till kursplanen i Studieportalen Studieplan

Course summary:

Date Details Due