Course syllabus
Course syllabus
TIF330 / FYM330 Computational continuum physics lp4 VT20 (7.5 hp)
The course is offered by the department of Physics
Contact details
Lecturers and examiners:
- Arkady Gonoskov, arkady.gonoskov@physics.gu.se, +46702085694, visiting address: Origovägen 6 B, floor 3, room 3046
-
Christophe Demaziere, demaz@chalmers.se, +46317723082
Teaching assistant:
- Kristoffer Pedersen, kriped@chalmers.se
Course purpose
The course is devoted to computational methods for continuum systems, such as fluids and gases, electromagnetic fields, and plasmas. The methods in question concern the possibilities of determining dynamics and properties of such systems. The course includes lectures and exercises for reaching understanding of the methods themselves, the underlying principles and ideas, as well as the limitations and subtleties needed for successful use and further development of numerical approaches. The course includes the practice of using Python, Matlab and basic elements of C++.
Schedule
Course literature
The main course literature is provided through the course lecture notes.
The following literature may be found useful.
Programming practice:
- Introduction to Numerical Programming, A Practical Guide for Scientists and Engineers Using Python and C/C++, Titus Adrian Beu
- A Primer on Scientific Programming with Python by Langtangen, Hans Petter
- The C Programming Language, by Brian W. Kernighan and Dennis M. Ritchie
- C++ Primer by Stanley B. Lippman (Author), Josée Lajoie (Author), Barbara E. Moo
Finite difference methods:
- Computational physics, Richard Fitzpatrick
- Computational Physics, Mark Newman
Spectral methods:
- Spectral methods and their applications, Guo Ben-Yu
- Chebyshev and Fourier Spectral Methods, John P. Boyd
Compound methods:
- Computational physics, J. M. Thijssen
- Plasma Physics via computer simulation, C. K. Birdsall, A. B. Langdon
- Computational physics, Richard Fitzpatrick
Course design
The course is divided into three main blocks, each containing activities and examination: (1) finite difference methods, (2) spectral/compound methods and (3) solving large systems of linear and non-linear equations. The lectures are focused on deriving the methods from basic ideas, which is followed by the analysis of practical limitations and of the further improvements. The students get training by applying the presented theory elements in exercises and homework problems. An important part is practical training of carrying out computations using a set of given problems within projects throughout the course.
The exercises will include programming practice in Python, C++ and Matlab. The guidance for arranging workflows will be given during the course. The students are welcome to communicate with teachers via Canvas, e-mails and discussions during lectures and practical sessions.
Learning objectives and syllabus
Learning objectives:
- Able to construct discretize equations governing a physical process with respect to the variables involved
- Explain basic time-integration methods
- Explain how to implement initial and boundary conditions
- Explain how to solve stationary problems, such as the Poisson equation
- Explain how to solve such equations in a reliable manner
- Explain how to treat multi-physics problems
- Able to discuss common computational methods and tools in computational continuum systems
- Use methods such as finite-difference time-domain, finite-element, plane-wave expansion, methods of moments
- Use methods such as finite-volume, spectral, pseudo-spectral
- Use methods such as CFL condition, explicit and implicit integration, operator splitting, geometric integration, stability preserving integration schemes
- Identifying and mitigating numerical artefacts and effects.
- Identify and explain conservation properties, such as particle number/mass conservation, energy conservation, phase-space incompressibility, positivity preserving schemes, and know how to test schemes for conservation properties
- Identify and evaluate classical test problems, checking convergence properties, method of manufactured solutions
- Write technical reports where computational results are presented and explained
- Communicate results and conclusions in a clear way.
Examination form
For each of the first two blocks of the course the examination is arranged via a single problem set that includes two analytical problems and one practical assignment on implementing and applying numerical methods using Python and C++. Students are allowed to work in groups of up to two students that they are encourage to form by themselves. The formed groups are to be reported via Canvas. For each problem set each group is required to submit a single report (pdf file) that includes solutions of analytical problems, the results of practical assignments and the implemented computer programs. For the practical assignments the students will receive individual feedback and a possibility of one optional resubmission in the end of the course (the due date will be announced). The grades for each of the first two problem sets will be released 15 working days after the respective due date.
The examination for third block is arranged via a set of assignments using Matlab grader. The students need to attend all the activities to get particular instructions.
The sets of assignments will be issued during the course together with due date for submission. All examination parts will be graded in order to achieve the final grade.
The final grade is determined according to the following table:
percent of points | ECTS scale | Chalmers scale | GU scale |
80 | A | 5 | VG |
70 - 79 | B | 4 | VG |
60 - 69 | C | 4 | G |
50 - 59 | D | 3 | G |
40 - 49 | E | 3 | G |
< 40 | F | U | U |
Links to the course page on student portals
Course summary:
Date | Details | Due |
---|---|---|