Course syllabus

Course-PM

KVM013 KVM013 Industrial energy systems lp2 HT23 (7.5 hp)

Offered by the Department of Space, Earth and Environment, Division of Energy Technology

 

Staff

Examiner and coordinator:  Simon Harvey (SH) simon.harvey@chalmers.se

Lecturers

Teaching assistants

Guest lecturers

  • Lia Detterfelt & Malin Bruhn (Renova)
  • Sven Hermansson (Södra)

 

Aim

The aim of the course is to train students to use process integration methods and tools necessary for identifying and designing efficient energy system solutions for the process industry that contribute to sustainable development. Technical systems encountered in the course include heat exchanger networks, boilers, heat pumps and combined heat and power systems. Besides technical issues, the course also covers methods for assessing the current and future economic and CO2 footprint performance of changes to industrial energy systems subject to uncertainty with respect to process conditions as well as future energy market conditions.

 

Schedule

TimeEdit

Literature

Compendium produced at the Division of Energy Technology, available in Canvas

For further reading, the book “Pinch Analysis and Process Integration: A User Guide on Process Integration for the Efficient Use of Energy” by I.C. Kemp is recommended. The book is available as an e-book from Chalmers library. Selected chapters are available in Canvas.

Course design

Description of the course's learning activities; how they are implemented and how they are connected. This is the student's guide to navigating the course. Do not forget to give the student advice on how to learn as much as possible based on the pedagogy you have chosen. Often, you may need to emphasize concrete things like how often they should enter the learning space on the learning platform, how different issues are shared between supervisors, etc.

Provide a plan for

  • lectures
  • exervises
  • laboratory work
  • projects
  • supervision
  • feedback
  • seminars

Should contain a description of how the digital tools (Canvas and others) should be used and how they are organized, as well as how communication between teachers and students takes place (Canvas, e-mail, other).

Do not forget to describe any resources that students need to use, such as lab equipment, studios, workshops, physical or digital materials.

You should be clear how missed deadlines and revisions are handled.

Changes made since the last occasion

A summary of changes made since the last occasion.

Learning objectives and syllabus

Learning objectives:

 

  • identify the major equipment units in an industrial steam network, and perform mass and energy balances calculations for such systems
  • calculate energy flows and relevant performance indicators for process utility boilers, heat pumps, and combined heat and power (CHP) units
  • determine the pinch temperature and the minimum heating and cooling requirements for a given industrial process and a given value of minimum acceptable temperature difference for heat exchanging
  • determine target values for the number of heat exchanger units, the heat exchanger network surface area, and the investment cost for a heat exchanger network that meets the above energy targets, and analyse the impact of choice of minimum temperature difference for heat exchanging on these energy and cost targets (supertargeting)
  • design a heat exchanger network for maximum heat recovery for a given new (greenfield) process and reduce the cost of this design by relaxation of the requirement for maximum heat recovery
  • identify and quantify inefficiencies (pinch violations) in the heat exchanger network of an existing process and suggest design modifications to reduce the heating and cooling demands of the existing network (retrofit)
  • identify opportunities for energy-efficient integration of heat pumps and CHP units at an industrial process site as well as the potential for export of excess heat to a district heating system
  • evaluate energy efficiency measures in industrial processes with respect to reduction of energy usage, greenhouse gas emissions and energy costs, accounting for current and possible future energy market conditions.

 

Link to the syllabus on Studieportalen.

Study plan

If the course is a joint course (Chalmers and Göteborgs Universitet) you should link to both syllabus (Chalmers and Göteborgs Universitet).

Examination form

Description of how the examination – written examinations and other – is executed and assessed.

Include:

  • what components are included, the purpose of these, and how they contribute to the learning objectives
  • how compulsory and/or voluntary components contribute to the final grade
  • grading limits and any other requirements for all forms of examination in order to pass the course (compulsory components)
  • examination form, e.g. if the examination is conducted as a digital examination
  • time and place of examination, both written exams and other exams such as project presentations
  • aids permitted during examinations, as well as which markings, indexes and notes in aids are permitted

Do not forget to be extra clear with project assignments; what is the problem, what should be done, what is the expected result, and how should this result be reported. Details such as templates for project reports, what happens at missed deadlines etc. are extra important to include.